Deep learning evaluation of echocardiograms to identify occult atrial fibrillation

神秘的 心房颤动 窦性心律 队列 无症状的 内科学 心脏病学 医学 病理 替代医学
作者
Neal Yuan,Nathan R. Stein,Grant Duffy,Roopinder K. Sandhu,Sumeet S. Chugh,Peng‐Sheng Chen,Carine Rosenberg,Christine M. Albert,Susan Cheng,Robert J. Siegel,David Ouyang
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:7 (1)
标识
DOI:10.1038/s41746-024-01090-z
摘要

Atrial fibrillation (AF) often escapes detection, given its frequent paroxysmal and asymptomatic presentation. Deep learning of transthoracic echocardiograms (TTEs), which have structural information, could help identify occult AF. We created a two-stage deep learning algorithm using a video-based convolutional neural network model that (1) distinguished whether TTEs were in sinus rhythm or AF and then (2) predicted which of the TTEs in sinus rhythm were in patients who had experienced AF within 90 days. Our model, trained on 111,319 TTE videos, distinguished TTEs in AF from those in sinus rhythm with high accuracy in a held-out test cohort (AUC 0.96 (0.95-0.96), AUPRC 0.91 (0.90-0.92)). Among TTEs in sinus rhythm, the model predicted the presence of concurrent paroxysmal AF (AUC 0.74 (0.71-0.77), AUPRC 0.19 (0.16-0.23)). Model discrimination remained similar in an external cohort of 10,203 TTEs (AUC of 0.69 (0.67-0.70), AUPRC 0.34 (0.31-0.36)). Performance held across patients who were women (AUC 0.76 (0.72-0.81)), older than 65 years (0.73 (0.69-0.76)), or had a CHA2DS2VASc ≥2 (0.73 (0.79-0.77)). The model performed better than using clinical risk factors (AUC 0.64 (0.62-0.67)), TTE measurements (0.64 (0.62-0.67)), left atrial size (0.63 (0.62-0.64)), or CHA2DS2VASc (0.61 (0.60-0.62)). An ensemble model in a cohort subset combining the TTE model with an electrocardiogram (ECGs) deep learning model performed better than using the ECG model alone (AUC 0.81 vs. 0.79, p = 0.01). Deep learning using TTEs can predict patients with active or occult AF and could be used for opportunistic AF screening that could lead to earlier treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MAVS完成签到,获得积分10
1秒前
兴奋柜子发布了新的文献求助10
1秒前
阿欣完成签到 ,获得积分10
1秒前
一往之前完成签到,获得积分10
2秒前
涔雨发布了新的文献求助10
2秒前
ding应助难过小懒虫采纳,获得10
2秒前
qq完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
Wang发布了新的文献求助10
8秒前
林大胖子完成签到,获得积分20
8秒前
幸福果汁完成签到 ,获得积分10
8秒前
8秒前
yyy发布了新的文献求助10
9秒前
韭黄发布了新的文献求助10
13秒前
HuangJunfei完成签到,获得积分10
14秒前
Akim应助番茄采纳,获得30
14秒前
www关注了科研通微信公众号
15秒前
16秒前
小豆包完成签到,获得积分10
17秒前
小数点完成签到,获得积分10
17秒前
所所应助韭黄采纳,获得10
18秒前
毓雅完成签到,获得积分10
19秒前
YF完成签到,获得积分10
19秒前
小豆包发布了新的文献求助10
19秒前
lm完成签到,获得积分10
20秒前
20秒前
21秒前
无花果应助魁梧的元芹采纳,获得10
21秒前
22秒前
22秒前
SYLH应助Wang采纳,获得20
23秒前
科研通AI5应助hui采纳,获得10
24秒前
阿欣发布了新的文献求助10
25秒前
木子杨发布了新的文献求助10
26秒前
26秒前
SNB888发布了新的文献求助10
27秒前
27秒前
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800140
求助须知:如何正确求助?哪些是违规求助? 3345459
关于积分的说明 10325049
捐赠科研通 3061931
什么是DOI,文献DOI怎么找? 1680614
邀请新用户注册赠送积分活动 807158
科研通“疑难数据库(出版商)”最低求助积分说明 763509