Deep learning radiomics of ultrasonography for differentiating sclerosing adenosis from breast cancer

无线电技术 医学 乳腺癌 卷积神经网络 尤登J统计 金标准(测试) 接收机工作特性 放射科 鉴别诊断 曲线下面积 人工智能 核医学 癌症 病理 内科学 计算机科学 药代动力学
作者
Chunxiao Li,Huili Zhang,Jing Chen,Sihui Shao,Xin Li,Minghua Yao,Yi Zheng,Rong Wu,Jun Shi
出处
期刊:Clinical Hemorheology and Microcirculation [IOS Press]
卷期号:84 (2): 153-163 被引量:8
标识
DOI:10.3233/ch-221608
摘要

The purpose of our study is to present a method combining radiomics with deep learning and clinical data for improved differential diagnosis of sclerosing adenosis (SA)and breast cancer (BC).A total of 97 patients with SA and 100 patients with BC were included in this study. The best model for classification was selected from among four different convolutional neural network (CNN) models, including Vgg16, Resnet18, Resnet50, and Desenet121. The intra-/inter-class correlation coefficient and least absolute shrinkage and selection operator method were used for radiomics feature selection. The clinical features selected were patient age and nodule size. The overall accuracy, sensitivity, specificity, Youden index, positive predictive value, negative predictive value, and area under curve (AUC) value were calculated for comparison of diagnostic efficacy.All the CNN models combined with radiomics and clinical data were significantly superior to CNN models only. The Desenet121+radiomics+clinical data model showed the best classification performance with an accuracy of 86.80%, sensitivity of 87.60%, specificity of 86.20% and AUC of 0.915, which was better than that of the CNN model only, which had an accuracy of 85.23%, sensitivity of 85.48%, specificity of 85.02%, and AUC of 0.870. In comparison, the diagnostic accuracy, sensitivity, specificity, and AUC value for breast radiologists were 72.08%, 100%, 43.30%, and 0.716, respectively.A combination of the CNN-radiomics model and clinical data could be a helpful auxiliary diagnostic tool for distinguishing between SA and BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清逸之风完成签到 ,获得积分10
刚刚
kuaijack完成签到,获得积分10
刚刚
豆豆小baby完成签到,获得积分10
刚刚
whatever举报求助违规成功
1秒前
kingwill举报求助违规成功
1秒前
哈基米德举报求助违规成功
1秒前
1秒前
1秒前
1秒前
儒雅儒雅完成签到,获得积分10
1秒前
碧蓝可乐发布了新的文献求助10
3秒前
3秒前
面壁思过发布了新的文献求助10
4秒前
思源应助飞流直下采纳,获得10
4秒前
李健的小迷弟应助rrrrrr采纳,获得10
4秒前
4秒前
5秒前
Lucifer完成签到 ,获得积分10
6秒前
6秒前
7秒前
LHP完成签到,获得积分10
7秒前
科研顺利完成签到,获得积分10
8秒前
8秒前
美少叔叔完成签到 ,获得积分10
8秒前
violet完成签到,获得积分10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
FYJY完成签到,获得积分10
8秒前
田様应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
Amanda完成签到,获得积分10
8秒前
打卡下班应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
yar应助科研通管家采纳,获得10
8秒前
8秒前
所所应助欢呼盛夏采纳,获得10
9秒前
喜之郎完成签到,获得积分10
9秒前
Naza1119完成签到,获得积分10
9秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Beyond The Sentence: Discourse And Sentential Form 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Chitosan brush for professional removal of plaque in mild peri-implantitis 440
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4075470
求助须知:如何正确求助?哪些是违规求助? 3614256
关于积分的说明 11471535
捐赠科研通 3332297
什么是DOI,文献DOI怎么找? 1831658
邀请新用户注册赠送积分活动 901588
科研通“疑难数据库(出版商)”最低求助积分说明 820344