Drivers of uncertainty in precipitation frequency under current and future climate – application to Maryland, USA

缩小尺度 气候变化 气候模式 气候学 降水 环境科学 不确定度分析 敏感性分析 统计模型 气象学 计算机科学 计量经济学 地理 数学 地质学 模拟 机器学习 海洋学
作者
Azin Al Kajbaf,Michelle Bensi,Kaye L. Brubaker
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:617: 128775-128775 被引量:1
标识
DOI:10.1016/j.jhydrol.2022.128775
摘要

The intensity duration frequency (IDF) curves that inform engineering design must reflect the effects of changing climate on extreme precipitation events. These changes can be addressed, in part, by statistically assessing synthetic data/outputs from high-resolution climate model projections to develop IDF curves. The estimation of IDF curves is associated with multiple sources of uncertainty. Most studies that characterize uncertainty in IDF curves under climate change only address the uncertainty due to the choice and processing of climate model outputs, but neglect uncertainty from statistical modeling choices. This study assesses the uncertainty introduced by developing IDF curves for Maryland, USA from model simulations of current and future climate, using statistical methods that are used in U.S. practice. The study analyzes output time series from the North American Regional Climate Change Assessment Program (NARCCAP) suite, which consists of 6 Atmosphere-Ocean General Circulation Models, each spatially downscaled with two different Regional Climate Models. In a separate study, the 3-hour NARCCAP model output was temporally downscaled to 15 min using two different machine learning models. Uncertainty is assessed both across and within models. Across-model uncertainty arises from the differences among synthetic time-series for precipitation and other meteorological variables produced by the 12 NARCCAP climate model projections. Within-model uncertainty arises from the modeling choices used to develop statistical IDF curves from a single climate model time series. These choices include: temporal downscaling method, time-series type, distribution, and parameter estimation method. The choice of climate model (across-model uncertainty) is the dominant contributor under both current and future climate conditions. On the within-model level, the other sources of uncertainty contribute differently for different climate models. The development and application of future-climate IDF curves should acknowledge the uncertainty introduced by statistical modeling choices, as well as by variation among climate model projections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
manman发布了新的文献求助10
1秒前
3秒前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
3秒前
CipherSage应助风风采纳,获得10
4秒前
领导范儿应助生动的慕卉采纳,获得10
4秒前
秦刚完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
6秒前
雪白凡梅完成签到 ,获得积分10
8秒前
10秒前
11发布了新的文献求助10
11秒前
11秒前
12秒前
zhang08完成签到,获得积分10
12秒前
13秒前
SWEETYXY发布了新的文献求助10
14秒前
yyy完成签到,获得积分10
14秒前
吱吱发布了新的文献求助30
15秒前
15秒前
叽里咕卢发布了新的文献求助10
16秒前
一团小煤球完成签到,获得积分10
18秒前
叶远望发布了新的文献求助10
18秒前
19秒前
yyy发布了新的文献求助10
19秒前
19秒前
20秒前
小蘑菇应助优秀的映萱采纳,获得10
20秒前
25秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
27秒前
NexusExplorer应助科研通管家采纳,获得10
27秒前
Hello应助科研通管家采纳,获得10
27秒前
orixero应助科研通管家采纳,获得10
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
27秒前
深情安青应助科研通管家采纳,获得10
27秒前
隐形曼青应助科研通管家采纳,获得30
28秒前
28秒前
28秒前
思源应助小夏采纳,获得10
28秒前
joker完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982130
求助须知:如何正确求助?哪些是违规求助? 3525851
关于积分的说明 11228945
捐赠科研通 3263739
什么是DOI,文献DOI怎么找? 1801643
邀请新用户注册赠送积分活动 879942
科研通“疑难数据库(出版商)”最低求助积分说明 807716