NIMG-63. PRE-SURGICAL RADIO-PATHOMIC MAPS OF TUMOR CELLULARITY PREDICT EARLY RECURRENCE IN GLIOBLASTOMA PATIENTS

流体衰减反转恢复 医学 胶质母细胞瘤 磁共振成像 放射科 高强度 核医学 癌症研究
作者
Aleksandra Winiarz,Samuel Bobholz,Allison Lowman,Savannah Duenweg,Fitzgerald Kyereme,Dylan Coss,Elizabeth J. Cochran,Jennifer Connelly,Peter S. LaViolette
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:24 (Supplement_7): vii178-vii178
标识
DOI:10.1093/neuonc/noac209.681
摘要

Abstract PURPOSE Glioblastoma time to recurrence following initial surgery is difficult to predict as it differs widely between patients. This is important as those who recur early have a poorer prognosis and shorter survival time. This study aimed to test the hypothesis that cell density, as defined by a predictive radio-pathomic mapping model, would indicate a more aggressive tumor, and thus carry a lower time to progression. METHODS 18 confirmed glioblastoma patients were included in this study. All patients underwent surgery followed by chemo-radiation, consistent with standard of care. Inclusion criteria also included radiographic recurrence, and autopsy confirmation of recurrent glioblastoma. Three magnetic resonance imaging (MRI) timepoints were investigated: pre- and post-surgery, and tumor recurrence defined by a radiologist. Patients were classified into two groups, early recurrence, as defined by tumor progression in the first 6 months post-surgery MRI (n=9, average 116 days to recurrence), and late recurrence, which included everyone else (n=9, average 283 days to recurrence). Contrast enhancement and FLAIR hyperintensity regions of interest were annotated from the patients’ T1+C and FLAIR scans. Radio-pathomic maps of predicted tumor cellularity were generated from a previously published machine learning model trained to identify tumor pathology using aligned autopsy tissue samples as ground truth to clinical MRI scans. The T1, T1+C, FLAIR, and apparent diffusion coefficient (ADC) images were used as input. Tumor cellularity values were then averaged across the T1+C and FLAIR ROIs. RESULTS Both pre- and post-surgical cell density within contrast enhancement was significantly greater in patients with early recurrence compared to those who recurred later (p ≤0.05). CONCLUSIONS Our results suggest that radio-pathomic maps of cell density can identify early-recurrence in patients prior to treatment. This may help with treatment planning for radiologists, surgeons, and neuro-oncologists which may include more aggressive surgery and more frequent monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
香菜农场主完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
沉静的时光完成签到 ,获得积分10
5秒前
开朗小兔子完成签到,获得积分10
7秒前
8秒前
IV完成签到,获得积分10
8秒前
8秒前
施世宏发布了新的文献求助10
9秒前
Wen完成签到 ,获得积分10
11秒前
田様应助浩浩好好采纳,获得10
11秒前
Orange应助王鴻源采纳,获得10
11秒前
13秒前
大个应助Andy采纳,获得10
13秒前
领导范儿应助hui采纳,获得10
13秒前
赵晨雪完成签到 ,获得积分10
14秒前
雍雍完成签到 ,获得积分10
15秒前
无印秀秀完成签到,获得积分20
15秒前
17秒前
18秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
123321发布了新的文献求助10
21秒前
科研通AI5应助肆樂柒采纳,获得10
22秒前
浮游应助蓝风铃采纳,获得30
22秒前
彭于晏应助Japrin采纳,获得10
23秒前
cuber发布了新的文献求助10
23秒前
小小完成签到,获得积分10
23秒前
星辰大海应助HY采纳,获得10
23秒前
23秒前
小王wang完成签到,获得积分10
23秒前
蔡宇滔完成签到,获得积分10
23秒前
nnl发布了新的文献求助10
24秒前
24秒前
24秒前
24秒前
左浩龙完成签到,获得积分10
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
International Handbook of Earthquake & Engineering Seismology, Part B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5146677
求助须知:如何正确求助?哪些是违规求助? 4343554
关于积分的说明 13527098
捐赠科研通 4184701
什么是DOI,文献DOI怎么找? 2294782
邀请新用户注册赠送积分活动 1295250
关于科研通互助平台的介绍 1238341