Deep Learning of Static and Dynamic Brain Functional Networks for Early MCI Detection

卷积神经网络 计算机科学 人工智能 体素 深度学习 集合(抽象数据类型) 模式识别(心理学) 静息状态功能磁共振成像 机器学习 神经科学 心理学 程序设计语言
作者
Tae‐Eui Kam,Han Zhang,Zhicheng Jiao,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 478-487 被引量:134
标识
DOI:10.1109/tmi.2019.2928790
摘要

While convolutional neural network (CNN) has been demonstrating powerful ability to learn hierarchical spatial features from medical images, it is still difficult to apply it directly to resting-state functional MRI (rs-fMRI) and the derived brain functional networks (BFNs). We propose a novel CNN framework to simultaneously learn embedded features from BFNs for brain disease diagnosis. Since BFNs can be built by considering both static and dynamic functional connectivity (FC), we first decompose rs-fMRI into multiple static BFNs with modified independent component analysis. Then, the voxel-wise variability in dynamic FC is used to quantify BFN dynamics. A set of paired 3D images representing static/dynamic BFNs can be fed into 3D CNNs, from which we can hierarchically and simultaneously learn static/dynamic BFN features. As a result, the dynamic BFN features can complement static BFN features and, at the meantime, different BFNs can help each other toward a joint and better classification. We validate our method with a publicly accessible, large cohort of rs-fMRI dataset in early-stage mild cognitive impairment (eMCI) diagnosis, which is one of the most challenging problems to the clinicians. By comparing with a conventional method, our method shows significant diagnostic performance improvement by almost 10%. This result demonstrates the effectiveness of deep learning in preclinical Alzheimer's disease diagnosis, based on the complex and high-dimensional voxel-wise spatiotemporal patterns of the resting-state brain functional connectomics. The framework provides a new but intuitive way to fully exploit deeply embedded diagnostic features from rs-fMRI for a better-individualized diagnosis of various neurological diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨乃彬完成签到,获得积分10
刚刚
加油完成签到 ,获得积分10
1秒前
3秒前
4秒前
zhn0607完成签到,获得积分10
4秒前
xiaohuang完成签到,获得积分10
5秒前
pluto应助赵文若采纳,获得10
5秒前
汉堡包应助Hao采纳,获得10
7秒前
lynn发布了新的文献求助10
9秒前
没有昵称完成签到,获得积分10
9秒前
科研通AI5应助妩媚的幼丝采纳,获得10
9秒前
扶余山本完成签到 ,获得积分10
10秒前
fr应助启原采纳,获得50
10秒前
传奇3应助xiaohuang采纳,获得10
11秒前
Terahertz完成签到 ,获得积分10
11秒前
阿布完成签到,获得积分20
12秒前
动听安筠完成签到 ,获得积分10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
非而者厚应助mao采纳,获得10
14秒前
张菁完成签到,获得积分10
14秒前
15秒前
lynn完成签到,获得积分10
19秒前
19秒前
Hao发布了新的文献求助10
20秒前
28秒前
在水一方应助任性冰枫采纳,获得10
29秒前
m彬m彬完成签到 ,获得积分10
30秒前
35秒前
35秒前
长乐完成签到 ,获得积分10
36秒前
搜集达人应助yyy采纳,获得10
37秒前
微笑牛排发布了新的文献求助10
40秒前
任性冰枫发布了新的文献求助10
40秒前
41秒前
42秒前
fl发布了新的文献求助10
44秒前
乔治发布了新的文献求助10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780525
求助须知:如何正确求助?哪些是违规求助? 3326007
关于积分的说明 10225002
捐赠科研通 3041057
什么是DOI,文献DOI怎么找? 1669166
邀请新用户注册赠送积分活动 799019
科研通“疑难数据库(出版商)”最低求助积分说明 758667