Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy

计算机科学 超材料 生成模型 代表(政治) 概率逻辑 人工智能 反向 生成设计 潜变量 编码(内存) 机器学习 理论计算机科学 算法 生成语法 数学 物理 政治学 经济 政治 公制(单位) 光电子学 法学 运营管理 几何学
作者
Wei Ma,Feng Cheng,Yihao Xu,Qinlong Wen,Yongmin Liu
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.1901.10819
摘要

The research of metamaterials has achieved enormous success in the manipulation of light in an artificially prescribed manner using delicately designed sub-wavelength structures, so-called meta-atoms. Even though modern numerical methods allow to accurately calculate the optical response of complex structures, the inverse design of metamaterials is still a challenging task due to the non-intuitive and non-unique relationship between physical structures and optical responses. To better unveil this implicit relationship and thus facilitate metamaterial design, we propose to represent metamaterials and model the inverse design problem in a probabilistically generative manner. By employing an encoder-decoder configuration, our deep generative model compresses the meta-atom design and optical response into a latent space, where similar designs and similar optical responses are automatically clustered together. Therefore, by sampling in the latent space, the stochastic latent variables function as codes, from which the candidate designs are generated upon given requirements in a decoding process. With the effective latent representation of metamaterials, we can elegantly model the complex structure-performance relationship in an interpretable way, and solve the one-to-many mapping issue that is intractable in a deterministic model. Moreover, to alleviate the burden of numerical calculation in data collection, we develop a semi-supervised learning strategy that allows our model to utilize unlabeled data in addition to labeled data during training, simultaneously optimizing the generative inverse design and deterministic forward prediction in an end-to-end manner. On a data-driven basis, the proposed model can serve as a comprehensive and efficient tool that accelerates the design, characterization and even new discovery in the research domain of metamaterials and photonics in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cooper完成签到 ,获得积分10
2秒前
科研通AI5应助000采纳,获得10
3秒前
ALONE完成签到,获得积分10
4秒前
DJDJ发布了新的文献求助10
6秒前
JrPaleo101应助李怀玉采纳,获得10
6秒前
6秒前
格格巫完成签到,获得积分10
7秒前
SciGPT应助111采纳,获得10
13秒前
Hongtao完成签到 ,获得积分10
13秒前
车间我完成签到 ,获得积分10
14秒前
DJDJ完成签到,获得积分10
15秒前
桐桐应助一一采纳,获得30
16秒前
陈龙发布了新的文献求助30
16秒前
16秒前
情怀应助lulu采纳,获得10
17秒前
111完成签到,获得积分10
19秒前
20秒前
赵焱峥完成签到,获得积分10
21秒前
llll发布了新的文献求助10
21秒前
22秒前
swy完成签到 ,获得积分10
22秒前
共享精神应助科研通管家采纳,获得10
23秒前
大腚疯猪应助科研通管家采纳,获得10
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
glj应助科研通管家采纳,获得10
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
roclie完成签到,获得积分10
23秒前
23秒前
23秒前
甜甜戎发布了新的文献求助10
25秒前
111发布了新的文献求助10
25秒前
27秒前
清脆代桃完成签到 ,获得积分10
27秒前
锣大炮完成签到 ,获得积分10
28秒前
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801432
求助须知:如何正确求助?哪些是违规求助? 3347164
关于积分的说明 10332162
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681720
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852