Sequence Alignment on Directed Graphs

有向无环图 计算机科学 编码 序列(生物学) 仿射变换 算法 动态规划 多序列比对 理论计算机科学 序列比对 数学 生物 遗传学 纯数学 肽序列 基因
作者
Kavya Vaddadi,Kshitij Tayal,Rajgopal Srinivasan,Naveen Sivadasan
出处
期刊:Journal of Computational Biology [Mary Ann Liebert, Inc.]
卷期号:26 (1): 53-67 被引量:22
标识
DOI:10.1089/cmb.2017.0264
摘要

Genomic variations in a reference collection are naturally represented as genome variation graphs. Such graphs encode common subsequences as vertices and the variations are captured using additional vertices and directed edges. The resulting graphs are directed graphs possibly with cycles. Existing algorithms for aligning sequences on such graphs make use of partial order alignment (POA) techniques that work on directed acyclic graphs (DAGs). To achieve this, acyclic extensions of the input graphs are first constructed through expensive loop unrolling steps (DAGification). Furthermore, such graph extensions could have considerable blowup in their size and in the worst case the blow-up factor is proportional to the input sequence length. We provide a novel alignment algorithm V-ALIGN that aligns the input sequence directly on the input graph while avoiding such expensive DAGification steps. V-ALIGN is based on a novel dynamic programming (DP) formulation that allows gapped alignment directly on the input graph. It supports affine and linear gaps. We also propose refinements to V-ALIGN for better performance in practice. With the proposed refinements, the time to fill the DP table has linear dependence on the sizes of the sequence, the graph, and its feedback vertex set. We conducted experiments to compare the proposed algorithm against the existing POA-based techniques. We also performed alignment experiments on the genome variation graphs constructed from the 1000 Genomes data. For aligning short sequences, standard approaches restrict the expensive gapped alignment to small filtered subgraphs having high similarity to the input sequence. In such cases, the performance of V-ALIGN for gapped alignment on the filtered subgraph depends on the subgraph sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术laji完成签到 ,获得积分10
1秒前
believe完成签到,获得积分10
1秒前
13完成签到,获得积分10
1秒前
1秒前
2秒前
聪明的戒指完成签到,获得积分10
2秒前
2秒前
铁铁关注了科研通微信公众号
3秒前
啥东西啥完成签到,获得积分10
3秒前
活泼的初阳关注了科研通微信公众号
4秒前
昏睡的蟠桃应助阿希塔采纳,获得200
5秒前
6秒前
6秒前
6秒前
酷波er应助犹豫的硬币采纳,获得10
6秒前
王夹心饼干完成签到,获得积分10
6秒前
6秒前
雨雨发布了新的文献求助10
7秒前
ZhouYW应助飞羽采纳,获得10
7秒前
隐形曼青应助飞羽采纳,获得10
7秒前
露卡完成签到,获得积分10
7秒前
8秒前
8秒前
羊羊羊发布了新的文献求助20
8秒前
乐观德地完成签到,获得积分10
8秒前
xx完成签到 ,获得积分10
9秒前
能干芙完成签到,获得积分10
9秒前
情怀应助sunshine采纳,获得10
10秒前
科研通AI5应助聪明的戒指采纳,获得10
10秒前
10秒前
快乐小霉发布了新的文献求助10
10秒前
123完成签到,获得积分10
10秒前
专注的糖豆完成签到,获得积分10
11秒前
nnbn发布了新的文献求助10
11秒前
holycale发布了新的文献求助30
11秒前
蛋蛋发布了新的文献求助10
11秒前
12秒前
蕯匿完成签到,获得积分10
12秒前
ahsisalah完成签到,获得积分10
12秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792971
求助须知:如何正确求助?哪些是违规求助? 3337641
关于积分的说明 10286083
捐赠科研通 3054212
什么是DOI,文献DOI怎么找? 1675888
邀请新用户注册赠送积分活动 803875
科研通“疑难数据库(出版商)”最低求助积分说明 761578