程序性细胞死亡
活性氧
谷胱甘肽
脂质过氧化
氧化应激
细胞生物学
化学
蛋白激酶C
生物
分子生物学
生物化学
细胞凋亡
激酶
酶
作者
Jasmin Dächert,Vanessa Ehrenfeld,Karoline Habermann,Nadezda Dolgikh,Simone Fulda
摘要
Recent data suggest that rhabdomyosarcoma (RMS) cells might be vulnerable to oxidative stress‐induced cell death. Here, we show that RMS are susceptible to cell death induced by Erastin, an inhibitor of the glutamate/cystine antiporter x c − that can increase reactive oxygen species (ROS) production via glutathione (GSH) depletion. Prior to cell death, Erastin caused GSH depletion, ROS production and lipid peroxidation. Importantly, pharmacological inhibitors of lipid peroxidation (i.e., Ferrostatin‐1, Liproxstatin‐1), ROS scavengers (i.e., α‐Tocopherol, GSH) and the iron chelator Deferoxamine inhibited ROS accumulation, lipid peroxidation and cell death, consistent with ferroptosis. Interestingly, the broad‐spectrum protein kinase C (PKC) inhibitor Bisindolylmaleimide I as well as the PKCα‐ and β‐selective inhibitor Gö6976 significantly reduced Erastin‐induced cell death. Similarly, genetic knockdown of PKCα significantly protected RMS cells from Erastin‐induced cell death. Furthermore, the broad‐spectrum nicotinamide adenine dinucleotide phosphate‐oxidase (NOX) inhibitor Diphenyleneiodonium and the selective NOX1/4 isoform inhibitor GKT137831 significantly decreased Erastin‐stimulated ROS, lipid ROS and cell death. These data provide new insights into the molecular mechanisms of ferroptosis in RMS, contributing to the development of new redox‐based treatment strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI