Application of higher order spectral features and support vector machines for bearing faults classification

支持向量机 主成分分析 稳健性(进化) 模式识别(心理学) 人工智能 振动 超参数优化 降维 分类器(UML) 计算机科学 滚动轴承 维数之咒 相关向量机 特征向量 工程类 量子力学 基因 物理 生物化学 化学
作者
Lotfi Saïdi,Jaouher Ben Ali,Farhat Fnaiech
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:54: 193-206 被引量:158
标识
DOI:10.1016/j.isatra.2014.08.007
摘要

Condition monitoring and fault diagnosis of rolling element bearings timely and accurately are very important to ensure the reliability of rotating machinery. This paper presents a novel pattern classification approach for bearings diagnostics, which combines the higher order spectra analysis features and support vector machine classifier. The use of non-linear features motivated by the higher order spectra has been reported to be a promising approach to analyze the non-linear and non-Gaussian characteristics of the mechanical vibration signals. The vibration bi-spectrum (third order spectrum) patterns are extracted as the feature vectors presenting different bearing faults. The extracted bi-spectrum features are subjected to principal component analysis for dimensionality reduction. These principal components were fed to support vector machine to distinguish four kinds of bearing faults covering different levels of severity for each fault type, which were measured in the experimental test bench running under different working conditions. In order to find the optimal parameters for the multi-class support vector machine model, a grid-search method in combination with 10-fold cross-validation has been used. Based on the correct classification of bearing patterns in the test set, in each fold the performance measures are computed. The average of these performance measures is computed to report the overall performance of the support vector machine classifier. In addition, in fault detection problems, the performance of a detection algorithm usually depends on the trade-off between robustness and sensitivity. The sensitivity and robustness of the proposed method are explored by running a series of experiments. A receiver operating characteristic (ROC) curve made the results more convincing. The results indicated that the proposed method can reliably identify different fault patterns of rolling element bearings based on vibration signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花猪1989完成签到,获得积分10
刚刚
小赞完成签到,获得积分10
1秒前
洁净的天德完成签到,获得积分10
1秒前
天行马完成签到,获得积分10
2秒前
南国完成签到,获得积分10
2秒前
mjc完成签到 ,获得积分10
2秒前
雪山飞龙发布了新的文献求助10
2秒前
07734完成签到,获得积分10
3秒前
SciGPT应助三微之廿采纳,获得10
3秒前
meimei完成签到 ,获得积分10
3秒前
cocobear完成签到 ,获得积分10
3秒前
桃子完成签到,获得积分10
4秒前
济民财完成签到,获得积分10
5秒前
Hightowerliu18完成签到,获得积分0
5秒前
5秒前
SaturnY完成签到,获得积分10
5秒前
丘比特应助文艺的冬卉采纳,获得10
6秒前
落后的怀柔完成签到,获得积分10
7秒前
7秒前
三寿完成签到,获得积分10
7秒前
8秒前
落后妖妖发布了新的文献求助10
9秒前
11秒前
小石头完成签到,获得积分10
12秒前
cn完成签到 ,获得积分10
13秒前
SWZ发布了新的文献求助10
13秒前
而当下的完成签到,获得积分10
13秒前
Lyn完成签到,获得积分10
15秒前
罐装冰块完成签到,获得积分10
15秒前
撒玉完成签到,获得积分10
16秒前
16秒前
nicky完成签到 ,获得积分10
16秒前
16秒前
黑粉头头完成签到,获得积分10
17秒前
的呀呀发布了新的文献求助10
18秒前
小圭发布了新的文献求助30
18秒前
miamikk完成签到 ,获得积分10
19秒前
不会游泳的鱼完成签到 ,获得积分10
19秒前
Doctor_Mill完成签到,获得积分10
19秒前
wjw完成签到,获得积分10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4162754
求助须知:如何正确求助?哪些是违规求助? 3698310
关于积分的说明 11675422
捐赠科研通 3388504
什么是DOI,文献DOI怎么找? 1858188
邀请新用户注册赠送积分活动 918860
科研通“疑难数据库(出版商)”最低求助积分说明 831707