模型预测控制
指数稳定性
控制理论(社会学)
指数函数
计算机科学
计算复杂性理论
数学优化
地平线
最优控制
分段
数学
理论(学习稳定性)
非线性系统
控制(管理)
算法
人工智能
机器学习
物理
数学分析
几何学
量子力学
作者
W. Langson,I. Chryssochoos,Saša V. Raković,D.Q. Mayne
出处
期刊:Automatica
[Elsevier]
日期:2003-11-14
卷期号:40 (1): 125-133
被引量:645
标识
DOI:10.1016/j.automatica.2003.08.009
摘要
A form of feedback model predictive control (MPC) that overcomes disadvantages of conventional MPC but which has manageable computational complexity is presented. The optimal control problem, solved on-line, yields a 'tube' and an associated piecewise affine control law that maintains the controlled trajectories in the tube despite uncertainty; computational complexity is linear (rather than exponential) in horizon length. Asymptotic stability of the controlled system is established.
科研通智能强力驱动
Strongly Powered by AbleSci AI