A Data-Driven Approach to Transfer Function Analysis for Superior Discriminative Power: Optimized Assessment of Dynamic Cerebral Autoregulation

脑自动调节 计算机科学 判别式 人工智能 脑血流 传递函数 学习迁移 模式识别(心理学) 机器学习 自动调节 血压 医学 心脏病学 内科学 工程类 电气工程
作者
Jia Liu,Zhen‐Ni Guo,David M. Simpson,Pandeng Zhang,Chang Liu,Jianing Song,Xinyi Leng,Yi Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (4): 909-921 被引量:10
标识
DOI:10.1109/jbhi.2020.3015907
摘要

Transfer function analysis (TFA) is extensively used to assess human physiological functions. However, extracting parameters from TFA is not usually optimized for detecting impaired function. In this study, we propose to use data-driven approaches to improve the performance of TFA in assessing blood flow control in the brain (dynamic cerebral autoregulation, dCA). Data were collected from two distinct groups of subjects deemed to have normal and impaired dCA. Continuous arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) were simultaneously recorded for approximately 10 mins in 82 subjects (including 41 healthy controls) to give 328 labeled samples of the TFA variables. The recordings were further divided into 4,294 short data segments to generate 17,176 unlabeled samples of the TFA variables. We optimized TFA post-processing with a generic semi-supervised learning strategy and a novel semi-supervised stacked ensemble learning (SSEL) strategy for classification into normal and impaired dCA. The generic strategy led to a performance with no significant difference to that of the conventional dCA analysis methods, whereas the proposed new strategy boosted the performance of TFA to an accuracy of 93.3%. To our knowledge, this is the best dCA discrimination performance obtained to date and the first attempt at optimizing TFA through machine learning techniques. Equivalent methods can potentially also be applied to assessing a wide spectrum of other human physiological functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老谢医生完成签到,获得积分10
1秒前
屯屯鱼完成签到,获得积分10
1秒前
jiu发布了新的文献求助10
2秒前
2秒前
NeuroWhite完成签到,获得积分10
4秒前
zjh完成签到,获得积分10
4秒前
4秒前
李爱国应助屯屯鱼采纳,获得10
5秒前
5秒前
欣欣杨完成签到,获得积分20
8秒前
Narcissus153完成签到,获得积分10
8秒前
Orange应助qtr采纳,获得10
10秒前
10秒前
桃花不用开了完成签到 ,获得积分10
11秒前
峰宝宝完成签到,获得积分10
12秒前
yumeng发布了新的文献求助10
13秒前
17秒前
海慕云完成签到,获得积分10
17秒前
不渝发布了新的文献求助10
17秒前
1111完成签到 ,获得积分10
19秒前
19秒前
20秒前
科研通AI5应助vivi采纳,获得10
21秒前
21秒前
遇上就这样吧应助念念采纳,获得10
23秒前
weizheng完成签到,获得积分10
23秒前
24秒前
bkagyin应助Kuhaku采纳,获得10
25秒前
松风水月发布了新的文献求助30
26秒前
26秒前
永无终点完成签到,获得积分10
26秒前
无奈芮完成签到,获得积分10
26秒前
27秒前
老实的栾完成签到,获得积分10
28秒前
yumeng完成签到,获得积分10
28秒前
29秒前
29秒前
商毛毛发布了新的文献求助10
31秒前
晴天不下雨完成签到,获得积分10
31秒前
仔拎完成签到,获得积分10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793506
求助须知:如何正确求助?哪些是违规求助? 3338452
关于积分的说明 10289653
捐赠科研通 3054952
什么是DOI,文献DOI怎么找? 1676211
邀请新用户注册赠送积分活动 804255
科研通“疑难数据库(出版商)”最低求助积分说明 761806