IoT-based Flood Depth Sensors in Artificial Intelligent Urban Flood Warning Systems

大洪水 洪水警报 计算机科学 洪水(心理学) 预警系统 洪水预报 应急管理 环境科学 地理 电信 心理学 政治学 考古 法学 心理治疗师
作者
Li‐Chiu Chang,Fi‐John Chang
标识
DOI:10.5194/egusphere-egu2020-12523
摘要

<p>In the face of increasingly flood disasters, on-line regional flood inundation forecasting in urban areas is vital for city flood management, while it remains a significant challenge because of the complex interactions and disruptions associated with highly uncertain hydro-meteorological variables and the lack of high-resolution hydro-geomorphological data. Effective on-line flood forecasting models through the rapid dissemination of inundation information regarding threatened areas deserve to develop appropriate technologies for early warning and disaster prevention. Artificial Intelligence (AI) becomes one of the popular techniques in the study of flood forecasts in the last decades. We apply the AI techniques with the newly implemented IoT-based real-time monitoring flood depth data to build an urban AI flood warning system. The AI system integrates the self-organizing feature mapping networks (SOM) with the recurrent nonlinear autoregressive with exogenous inputs network (R-NARX) for modelling the regional flooding prediction. The proposed AI model with the IoT-based real-time monitoring flood depth datasets can increase the value-added application of diversified disaster prevention information and improve the accuracy of flood forecasting. We develop an on-line correction algorithm for continuously learning and correcting model’s parameters, automatic operation modules, forecast results output modules, and web page display interface. The proposed AI system can provide the smart early flooding warnings in the urban area and help the Water Resources Agency to promote the intelligent water disaster prevention services.</p><p>Keywords:</p><p>Artificial Intelligence (AI); Artificial Neural Networks (ANN); Internet of Things (IoT); Regional flood inundation forecast; Spatial-temporal distribution</p>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dxxxt完成签到,获得积分10
1秒前
Lucky发布了新的文献求助30
3秒前
4秒前
4秒前
4秒前
高贵水壶完成签到,获得积分10
4秒前
5秒前
可爱的函函应助梦梦采纳,获得10
6秒前
正直的文涛完成签到,获得积分20
6秒前
7秒前
7秒前
8秒前
8秒前
可达鸭完成签到 ,获得积分10
8秒前
9秒前
嘟嘟完成签到,获得积分10
10秒前
科研通AI5应助畅小狮采纳,获得10
10秒前
打打应助怕黑诗桃采纳,获得10
10秒前
lllxxx完成签到,获得积分10
10秒前
11秒前
Lili完成签到,获得积分10
12秒前
12秒前
田様应助xin采纳,获得10
12秒前
Bonnie完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
呆萌的蚂蚁完成签到,获得积分20
13秒前
Mars_X发布了新的文献求助10
13秒前
Rita发布了新的文献求助30
13秒前
13秒前
噔噔蹬发布了新的文献求助10
14秒前
善良又亦完成签到 ,获得积分10
15秒前
curryww发布了新的文献求助10
15秒前
ALLEN发布了新的文献求助10
16秒前
1112发布了新的文献求助10
16秒前
我不叫蔚发布了新的文献求助10
16秒前
Akim应助syf采纳,获得10
18秒前
哈哈哈发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4494852
求助须知:如何正确求助?哪些是违规求助? 3947281
关于积分的说明 12238932
捐赠科研通 3604810
什么是DOI,文献DOI怎么找? 1982720
邀请新用户注册赠送积分活动 1019384
科研通“疑难数据库(出版商)”最低求助积分说明 911910