清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Understanding the Capacity Fading Mechanisms of O3‐Type Na[Ni0.5Mn0.5]O2 Cathode for Sodium‐Ion Batteries

材料科学 阴极 容量损失 电化学 插层(化学) 电解质 离子 共沉淀 结构稳定性 化学工程 无机化学 电极 物理化学 结构工程 工程类 有机化学 化学
作者
Tae‐Yeon Yu,Hoon‐Hee Ryu,Geumjae Han,Yang‐Kook Sun
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:10 (37) 被引量:125
标识
DOI:10.1002/aenm.202001609
摘要

Abstract A spherical O3‐type Na[Ni 0.5 Mn 0.5 ]O 2 cathode, composed of compactly‐packed nanosized primary particles, is synthesized by the coprecipitation method to examine its capacity fading mechanism. The electrochemical performance cycled at different upper cut‐off voltages demonstrate that the P3′ to O3′ phase transition above 3.6 V is primarily responsible for the loss of the structural stability of the O3‐type Na[Ni 0.5 Mn 0.5 ]O 2 cathode. The capacity retention is greatly improved by avoiding the P3′ to O3′ phase transition, and 94.2% and 90.7% of the initial capacities (108.9 mAh g −1 at 3.35 V and 125.4 mAh g −1 at 3.58 V) are retained after 100 cycles. During cycling at 4.0 V, rapid capacity fading (75.5% of 147.5 mAh g −1 after 100 cycles) is observed. The poor Na + ion intercalation stability is directly attributed to the extent of microcracks caused by the abrupt change in the lattice structure. Microcracks traversing the entire secondary particle compromise the mechanical integrity of the cathode and accelerate electrolyte infiltration into the particle interior, causing the subsequent degradation of the exposed internal surfaces. Thus, suppressing microcracks in secondary particles is one of the key challenges for improving the cycling stability of hierarchical structured O3‐type Na[Ni 0.5 Mn 0.5 ]O 2 cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wayne完成签到 ,获得积分10
11秒前
xun完成签到,获得积分20
19秒前
蓝胖子完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
34秒前
39秒前
老石完成签到 ,获得积分10
40秒前
完美世界应助朴素难敌采纳,获得30
40秒前
年轻千愁完成签到 ,获得积分10
51秒前
佳言2009完成签到 ,获得积分10
57秒前
helen李完成签到 ,获得积分10
58秒前
trophozoite完成签到 ,获得积分10
1分钟前
77完成签到 ,获得积分10
1分钟前
1分钟前
zm完成签到 ,获得积分10
1分钟前
Criminology34应助yyyyy采纳,获得10
1分钟前
lod完成签到,获得积分10
1分钟前
丫头完成签到 ,获得积分10
1分钟前
落落洛栖完成签到 ,获得积分10
2分钟前
2分钟前
maggiexjl完成签到,获得积分10
2分钟前
charih完成签到 ,获得积分10
2分钟前
清淮完成签到 ,获得积分10
2分钟前
jess完成签到,获得积分10
2分钟前
小手冰凉完成签到 ,获得积分10
2分钟前
wujiwuhui完成签到 ,获得积分10
2分钟前
2分钟前
Lucas应助Gryphon采纳,获得10
3分钟前
Ray完成签到 ,获得积分10
3分钟前
3分钟前
悦果完成签到 ,获得积分10
3分钟前
朴素难敌发布了新的文献求助30
3分钟前
3分钟前
3分钟前
3分钟前
Gryphon发布了新的文献求助10
3分钟前
要减肥的土豆完成签到 ,获得积分10
3分钟前
Sunny完成签到,获得积分10
3分钟前
曹国庆完成签到 ,获得积分10
3分钟前
朴素难敌完成签到,获得积分20
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651292
求助须知:如何正确求助?哪些是违规求助? 4784101
关于积分的说明 15053375
捐赠科研通 4809931
什么是DOI,文献DOI怎么找? 2572831
邀请新用户注册赠送积分活动 1528736
关于科研通互助平台的介绍 1487766