Prediction of progression from pre‐diabetes to diabetes: Development and validation of a machine learning model

逻辑回归 机器学习 人工智能 糖尿病 医学 数据集 队列 预测建模 计算机科学 内科学 内分泌学
作者
Avivit Cahn,Avi Shoshan,Tal Sagiv,Rachel Yesharim,Ran Goshen,Varda Shalev,Itamar Raz
出处
期刊:Diabetes-metabolism Research and Reviews [Wiley]
卷期号:36 (2) 被引量:81
标识
DOI:10.1002/dmrr.3252
摘要

Abstract Aims Identification, a priori, of those at high risk of progression from pre‐diabetes to diabetes may enable targeted delivery of interventional programmes while avoiding the burden of prevention and treatment in those at low risk. We studied whether the use of a machine‐learning model can improve the prediction of incident diabetes utilizing patient data from electronic medical records. Methods A machine‐learning model predicting the progression from pre‐diabetes to diabetes was developed using a gradient boosted trees model. The model was trained on data from The Health Improvement Network (THIN) database cohort, internally validated on THIN data not used for training, and externally validated on the Canadian AppleTree and the Israeli Maccabi Health Services (MHS) data sets. The model's predictive ability was compared with that of a logistic‐regression model within each data set. Results A cohort of 852 454 individuals with pre‐diabetes (glucose ≥ 100 mg/dL and/or HbA1c ≥ 5.7) was used for model training including 4.9 million time points using 900 features. The full model was eventually implemented using 69 variables, generated from 11 basic signals. The machine‐learning model demonstrated superiority over the logistic‐regression model, which was maintained at all sensitivity levels – comparing AUC [95% CI] between the models; in the THIN data set (0.865 [0.860,0.869] vs 0.778 [0.773,0.784] P < .05), the AppleTree data set (0.907 [0.896, 0.919] vs 0.880 [0.867, 0.894] P < .05) and the MHS data set (0.925 [0.923, 0.927] vs 0.876 [0.872, 0.879] P < .05). Conclusions Machine‐learning models preserve their performance across populations in diabetes prediction, and can be integrated into large clinical systems, leading to judicious selection of persons for interventional programmes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助生生不息采纳,获得10
1秒前
hustscholar完成签到,获得积分10
2秒前
2秒前
NetSenior完成签到,获得积分10
3秒前
疯狂的翅膀完成签到,获得积分10
4秒前
独特的友琴完成签到 ,获得积分10
5秒前
5秒前
学术渣渣灰完成签到,获得积分10
5秒前
5秒前
爱听歌半山完成签到,获得积分10
6秒前
JamesPei应助舒适路人采纳,获得10
7秒前
8秒前
一只小羊发布了新的文献求助10
8秒前
Hwenjing完成签到,获得积分10
9秒前
完美世界应助516165165采纳,获得10
10秒前
10秒前
SYLH应助yw采纳,获得30
12秒前
12秒前
14秒前
田様应助vvv采纳,获得10
15秒前
15秒前
天天快乐应助古炮采纳,获得10
16秒前
打打应助国服第一YWF采纳,获得10
16秒前
17秒前
18秒前
xiubo128发布了新的文献求助10
18秒前
21秒前
Dragonfln完成签到,获得积分10
21秒前
jovrtic发布了新的文献求助10
22秒前
22秒前
咕噜完成签到,获得积分10
23秒前
温暖的曼凡完成签到,获得积分10
23秒前
张哈哈发布了新的文献求助10
23秒前
领导范儿应助舒适路人采纳,获得10
24秒前
24秒前
lllxxx完成签到 ,获得积分10
24秒前
荡秋千的猴子完成签到,获得积分10
25秒前
野性的觅夏完成签到 ,获得积分10
25秒前
华仔应助赵胜男采纳,获得10
26秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784436
求助须知:如何正确求助?哪些是违规求助? 3329565
关于积分的说明 10242565
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671494
邀请新用户注册赠送积分活动 800371
科研通“疑难数据库(出版商)”最低求助积分说明 759391