Chemical gradients in human enamel crystallites

搪瓷漆 微晶 牙釉质 材料科学 羟基磷灰石 成釉不全 磷灰石 溶解 化学 复合材料 矿物学 冶金 生物化学 物理化学
作者
Karen DeRocher,Paul J. M. Smeets,Berit H. Goodge,Michael J. Zachman,Prasanna V. Balachandran,Linus Stegbauer,Michael J. Cohen,Lyle M. Gordon,James M. Rondinelli,Lena F. Kourkoutis,Derk Joester
出处
期刊:Nature [Springer Nature]
卷期号:583 (7814): 66-71 被引量:169
标识
DOI:10.1038/s41586-020-2433-3
摘要

Dental enamel is a principal component of teeth1, and has evolved to bear large chewing forces, resist mechanical fatigue and withstand wear over decades2. Functional impairment and loss of dental enamel, caused by developmental defects or tooth decay (caries), affect health and quality of life, with associated costs to society3. Although the past decade has seen progress in our understanding of enamel formation (amelogenesis) and the functional properties of mature enamel, attempts to repair lesions in this material or to synthesize it in vitro have had limited success4-6. This is partly due to the highly hierarchical structure of enamel and additional complexities arising from chemical gradients7-9. Here we show, using atomic-scale quantitative imaging and correlative spectroscopies, that the nanoscale crystallites of hydroxylapatite (Ca5(PO4)3(OH)), which are the fundamental building blocks of enamel, comprise two nanometric layers enriched in magnesium flanking a core rich in sodium, fluoride and carbonate ions; this sandwich core is surrounded by a shell with lower concentration of substitutional defects. A mechanical model based on density functional theory calculations and X-ray diffraction data predicts that residual stresses arise because of the chemical gradients, in agreement with preferential dissolution of the crystallite core in acidic media. Furthermore, stresses may affect the mechanical resilience of enamel. The two additional layers of hierarchy suggest a possible new model for biological control over crystal growth during amelogenesis, and hint at implications for the preservation of biomarkers during tooth development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
zoe完成签到 ,获得积分10
刚刚
jhh发布了新的文献求助10
2秒前
科研通AI6应助海棠未眠采纳,获得10
2秒前
浮游应助Ffffff采纳,获得10
3秒前
3秒前
yusovegoistt发布了新的文献求助10
3秒前
你好发布了新的文献求助40
4秒前
zwh完成签到,获得积分10
5秒前
6秒前
ddddd完成签到,获得积分20
6秒前
7秒前
7秒前
9秒前
阿欢完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
12秒前
11发布了新的文献求助10
12秒前
shirely发布了新的文献求助10
13秒前
YAN应助师震铎采纳,获得10
13秒前
14秒前
emile发布了新的文献求助10
14秒前
15秒前
dckiop发布了新的文献求助10
16秒前
玩命的青亦完成签到,获得积分10
16秒前
太叔夜南完成签到,获得积分10
16秒前
十月天秤完成签到,获得积分0
17秒前
可爱的函函应助vickki采纳,获得10
17秒前
18秒前
20秒前
1241343948发布了新的文献求助10
20秒前
烂漫的飞松完成签到,获得积分10
20秒前
无心的满天完成签到,获得积分20
21秒前
小二郎应助海棠未眠采纳,获得10
21秒前
FashionBoy应助疯狂的缘分采纳,获得10
22秒前
粥粥发布了新的文献求助10
23秒前
dckiop完成签到,获得积分10
23秒前
浮游应助腼腆的又槐采纳,获得10
24秒前
计划明天炸地球完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495384
求助须知:如何正确求助?哪些是违规求助? 4593053
关于积分的说明 14439596
捐赠科研通 4525892
什么是DOI,文献DOI怎么找? 2479779
邀请新用户注册赠送积分活动 1464570
关于科研通互助平台的介绍 1437425