亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Competitive Ratio of Threshold Policies for Online Unit-Density Knapsack Problems

背包问题 竞争分析 在线算法 数学优化 多项式时间逼近格式 连续背包问题 计算机科学 近似算法 上下界 调度(生产过程) 数学 数学分析
作者
Will Ma,David Simchi‐Levi,Jinglong Zhao
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2023.01577
摘要

We study a wholesale supply chain ordering problem. In this problem, the supplier has an initial stock and faces an unpredictable stream of incoming orders, making real-time decisions on whether to accept or reject each order. What makes this wholesale supply chain ordering problem special is its knapsack constraint; that is, we do not allow partially accepting an order or splitting an order. The objective is to maximize the utilized stock. We model this wholesale supply chain ordering problem as an online unit-density knapsack problem. We study randomized threshold algorithms that accept an item as long as its size exceeds the threshold. We derive two optimal threshold distributions, the first is 0.4324-competitive relative to the optimal off-line integral packing, and the second is 0.4285-competitive relative to the optimal off-line fractional packing. Both results require optimizing the cumulative distribution function of the random threshold, which are challenging infinite-dimensional optimization problems. We also consider the generalization to multiple knapsacks, in which an arriving item has a different size in each knapsack. We derive a 0.2142-competitive algorithm for this problem. We also show that any randomized algorithm for this problem cannot be more than 0.4605-competitive. This is the first upper bound strictly less than 0.5, which implies the intrinsic challenge of the knapsack constraint. We show how to naturally implement our optimal threshold distributions in the warehouses of a Latin American chain department store. We run simulations on its order data that demonstrate the efficacy of our proposed algorithms. This paper was accepted by George Shanthikumar, data science. Funding: This work was supported by the Massachusetts Institute of Technology–Accenture Alliance for Business Analytics. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.01577 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
畅快甜瓜发布了新的文献求助10
9秒前
10秒前
15秒前
19秒前
25秒前
有人应助jy采纳,获得10
31秒前
waleedo2020发布了新的文献求助10
36秒前
畅快甜瓜发布了新的文献求助30
51秒前
53秒前
1分钟前
星辰大海应助lngenuo采纳,获得30
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
隐形曼青应助小熊采纳,获得10
1分钟前
1分钟前
小兔子乖乖完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
Xixicccccccc发布了新的文献求助10
2分钟前
2分钟前
2分钟前
畅快甜瓜发布了新的文献求助10
2分钟前
lngenuo发布了新的文献求助30
2分钟前
腼腆钵钵鸡完成签到 ,获得积分10
2分钟前
trophozoite完成签到 ,获得积分10
2分钟前
小g完成签到,获得积分10
2分钟前
2分钟前
幸福的小草莓完成签到,获得积分20
2分钟前
2分钟前
2分钟前
gszy1975完成签到,获得积分10
2分钟前
2分钟前
九星完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
搜集达人应助畅快甜瓜采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732139
求助须知:如何正确求助?哪些是违规求助? 5336882
关于积分的说明 15322005
捐赠科研通 4877849
什么是DOI,文献DOI怎么找? 2620672
邀请新用户注册赠送积分活动 1569937
关于科研通互助平台的介绍 1526507