已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CT-based deep learning radiomics analysis for evaluation of serosa invasion in advanced gastric cancer

医学 无线电技术 癌症 放射科 医学物理学 内科学
作者
Rui-Jia Sun,Mengjie Fang,Lei Tang,Xiao-Ting Li,Qiao-Yuan Lu,Di Dong,Jie Tian,Ying‐Shi Sun
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:132: 109277-109277 被引量:46
标识
DOI:10.1016/j.ejrad.2020.109277
摘要

Purpose This work aimed to develop and validate a deep learning radiomics model for evaluating serosa invasion in gastric cancer. Materials and Methods A total of 572 gastric cancer patients were included in this study. Firstly, we retrospectively enrolled 428 consecutive patients (252 in the training set and 176 in the test set I) with pathological confirmed T3 or T4a. Subsequently, 144 patients who were clinically diagnosed cT3 or cT4a were prospectively allocated to the test set II. Histological verification was based on the surgical specimens. CT findings were determined by a panel of three radiologists. Conventional hand-crafted features and deep learning features were extracted from three phases CT images and were utilized to build radiomics signatures via machine learning methods. Incorporating the radiomics signatures and CT findings, a radiomics nomogram was developed via multivariable logistic regression. Its diagnostic ability was measured using receiver operating characteristiccurve analysis. Results The radiomics signatures, built with support vector machine or artificial neural network, showed good performance for discriminating T4a in the test I and II sets with area under curves (AUCs) of 0.76−0.78 and 0.79−0.84. The nomogram had powerful diagnostic ability in all training, test I and II sets with AUCs of 0.90 (95 % CI, 0.86−0.94), 0.87 (95 % CI, 0.82−0.92) and 0.90 (95 % CI, 0.85−0.96) respectively. The net reclassification index revealed that the radiomics nomogram had significantly better performance than the clinical model (p-values < 0.05). Conclusions The deep learning radiomics model based on CT images is effective at discriminating serosa invasion in gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZhuJing发布了新的文献求助20
1秒前
XQQDD完成签到,获得积分10
2秒前
3秒前
suyu完成签到 ,获得积分10
3秒前
和谐蛋蛋完成签到,获得积分10
3秒前
吴嘉俊完成签到 ,获得积分10
3秒前
Tough完成签到 ,获得积分10
3秒前
12345发布了新的文献求助10
4秒前
celine完成签到,获得积分10
4秒前
5秒前
简单的沛蓝完成签到 ,获得积分10
5秒前
AZN完成签到 ,获得积分10
5秒前
story发布了新的文献求助10
6秒前
WangJL完成签到 ,获得积分10
6秒前
HughWang完成签到,获得积分10
7秒前
糊糊关注了科研通微信公众号
7秒前
1234567xjy完成签到,获得积分10
9秒前
9秒前
nono完成签到,获得积分10
9秒前
zhouleiwang完成签到,获得积分10
10秒前
无心发布了新的文献求助10
10秒前
Big_Show发布了新的文献求助10
11秒前
12秒前
魔幻的访云完成签到 ,获得积分10
13秒前
celine发布了新的文献求助10
14秒前
哆啦完成签到,获得积分20
14秒前
RABITTS完成签到 ,获得积分10
15秒前
bookgg完成签到 ,获得积分10
16秒前
科研小白完成签到 ,获得积分10
19秒前
21秒前
chaos完成签到 ,获得积分10
22秒前
菜根谭完成签到 ,获得积分10
22秒前
22秒前
cwj完成签到,获得积分10
24秒前
肚子幽伤完成签到,获得积分10
25秒前
无心完成签到,获得积分20
26秒前
糊糊发布了新的文献求助10
27秒前
李海艳发布了新的文献求助30
27秒前
Benjamin完成签到 ,获得积分10
28秒前
高分求助中
How Maoism Was Made: Reconstructing China, 1949-1965 1200
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 9th 400
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4390714
求助须知:如何正确求助?哪些是违规求助? 3881472
关于积分的说明 12088898
捐赠科研通 3525484
什么是DOI,文献DOI怎么找? 1934577
邀请新用户注册赠送积分活动 975589
科研通“疑难数据库(出版商)”最低求助积分说明 873314

今日热心研友

linkman
130
优雅的跳跳糖
4
lucifer
10
Rita
10
小二郎
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10