带隙
费米能级
态密度
半导体
凝聚态物理
电子能带结构
材料科学
微晶
直接和间接带隙
密度泛函理论
半金属
电阻率和电导率
电子
化学
结晶学
光电子学
物理
计算化学
量子力学
作者
Md. Saiful Islam,Humayun Kabir,Yuji Inagaki,Md. Abdur Razzaque Sarker
标识
DOI:10.1016/j.jallcom.2020.154499
摘要
Abstract We have studied the layered compounds of polycrystalline vanadates CaV2O6 and MnV2O6, synthesized by a conventional solid-state reaction technique, because of their interesting applications such as optoelectronic materials, dielectric ceramics, semiconductors, magnetic candidates, catalytic materials, etc. The crystal phase and structures were analyzed by X-ray powder diffraction (XRD). The detailed surface morphologies were characterized by scanning electron microscopy (SEM). The temperature dependence of electrical resistivity of these vanadates shows semiconducting nature, which is consistent with their electronic band structures studied by first principles density functional theory (DFT). The energy band gap of CaV2O6 is larger than that of MnV2O6. The dominant contribution to the bottom of the conduction band in the total density of states (TDOS) mainly comes from the V 3d electrons in both vanadates. Indeed, the Fermi level lies in the conduction band rather than in the forbidden region in MnV2O6 indicating the degeneracy of metavanadates. Using Wood–Tauc theory, the calculated optical band gap from the observed absorbance by a UV–Visible spectrophotometer is almost similar with their electronic band gap.
科研通智能强力驱动
Strongly Powered by AbleSci AI