Automatic vertebrae recognition from arbitrary spine MRI images by a category-Consistent self-calibration detection framework

人工智能 判别式 计算机科学 跳跃式监视 模式识别(心理学) 计算机视觉 校准 人工神经网络 数学 统计
作者
Shen Zhao,Xi Wu,Bo Chen,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:67: 101826-101826 被引量:21
标识
DOI:10.1016/j.media.2020.101826
摘要

Accurate vertebrae recognition is crucial in spinal disease localization and successive treatment planning. Although vertebrae detection has been studied for years, reliably recognizing vertebrae from arbitrary spine MRI images remains a challenge. The similar appearance of different vertebrae and the pathological deformations of the same vertebrae makes it difficult for classification in images with different fields of view (FOV). In this paper, we propose a Category-consistent Self-calibration Recognition System (Can-See) to accurately classify the labels and precisely predict the bounding boxes of all vertebrae with improved discriminative capabilities for vertebrae categories and self-awareness of false positive detections. Can-See is designed as a two-step detection framework: (1) A hierarchical proposal network (HPN) to perceive the existence of the vertebrae. HPN leverages the correspondence between hierarchical features and multi-scale anchors to detect objects. This correspondence tackles the image scale/resolution challenge. (2) A Category-consistent Self-calibration Recognition (CSRN) Network to classify each vertebra and refine their bounding boxes. CSRN leverages the dictionary learning principle to preserve the most representative features; it imposes a novel category-consistent constraint to force vertebrae with the same label to have similar features. CSRN then innovatively formulates message passing into the deep learning framework, which leverages the label compatibility principle to self-calibrate the wrong pre-recognitions. Can-See is trained and evaluated on a capacious and challenging dataset of 450 MRI scans. The results show that Can-See achieves high performance (testing accuracy reaches 0.955) and outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kewell发布了新的文献求助10
刚刚
1秒前
2秒前
海虎爆破拳完成签到,获得积分10
4秒前
5秒前
Akim应助liu采纳,获得10
6秒前
6秒前
飞飞飞完成签到,获得积分10
6秒前
6秒前
山间风发布了新的文献求助10
7秒前
刘刘溜完成签到,获得积分10
8秒前
9秒前
科目三应助心灵美芯采纳,获得10
9秒前
9秒前
充电宝应助张潇潇采纳,获得10
10秒前
sunshine应助海绵宝宝采纳,获得10
10秒前
咦哈哈哈发布了新的文献求助10
10秒前
深情安青应助飞飞飞采纳,获得10
12秒前
14秒前
kewell完成签到,获得积分10
15秒前
烤全鱼呢发布了新的文献求助10
16秒前
16秒前
16秒前
Nancy发布了新的文献求助10
16秒前
17秒前
读个博吧发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
一个搞不懂晶体学的小牛马完成签到,获得积分10
19秒前
19秒前
20秒前
huaxuxu发布了新的文献求助10
21秒前
奈布森森完成签到,获得积分20
21秒前
21秒前
22秒前
HAN关闭了HAN文献求助
22秒前
hgc发布了新的文献求助10
22秒前
bkagyin应助丁丁采纳,获得80
22秒前
大模型应助cj采纳,获得10
23秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840235
求助须知:如何正确求助?哪些是违规求助? 3382393
关于积分的说明 10523553
捐赠科研通 3101930
什么是DOI,文献DOI怎么找? 1708499
邀请新用户注册赠送积分活动 822527
科研通“疑难数据库(出版商)”最低求助积分说明 773346