Tactile Surface Roughness Categorization With Multineuron Spike Train Distance

Spike(软件开发) 提炼听神经的脉冲 人工智能 计算机科学 火车 模式识别(心理学) 尖峰神经网络 公制(单位) 集合(抽象数据类型) 相似性(几何) 人工神经网络 计算机视觉 工程类 图像(数学) 软件工程 程序设计语言 地理 地图学 运营管理
作者
Zhengkun Yi,Tiantian Xu,Shifeng Guo,Wanfeng Shang,Xinyu Wu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:18 (4): 1835-1845 被引量:13
标识
DOI:10.1109/tase.2020.3021742
摘要

Tactile sensing with spiking neural networks (SNNs) has attracted increasing attention in the past decades. In this article, a novel SNN framework is proposed for the tactile surface roughness categorization task. In contrast to supervised SNN methods such as ReSuMe and Tempotron that require prespecifying target spike trains, the presented method performs the classification through directly comparing the distance between multineuron spike trains. Unlike simple spike train fusion methods using average pairwise spike train distance or pooled spike train distance, the proposed method merges spike trains from different neurons with the multineuron spike train distance, which can capture the complex correlation of multiple spike trains. Specifically, the spike trains are generated via the Izhikevich neurons from tactile signals. The similarity of the multineuron spike trains is computed using the multineuron Victor–Purpura spike train distance, which can be efficiently implemented in an inductive manner. The classification can be performed by incorporating $k$ -nearest neighbors and the multineuron spike train distance as a similarity metric. The proposed framework is quite general, i.e., other multineuron spike train distances and spike train kernel-based methods can be readily incorporated. The effectiveness of the proposed method has been demonstrated on a tactile data set by comparing it with various feature- and spike-based methods. Note to Practitioners —In the soft neuromorphic implementation of biomimetic tactile sensing and the development of the tactile sensing capability in neurobotic systems, the processing and analysis of spike-like tactile signals are quite common. Inspired by human tactile perception, this article proposes a novel supervised spiking neural network method for tactile sensing tasks. The traditional methods have to prespecify target spike trains, which is still an open question. In addition, the current ways to fuse spike trains from multiple neurons are far from mature. This article tackles these two problems using spike train similarity comparison with multineuron spike train distance. The direct spike train similarity comparison avoids the need to prespecify target spike trains. The multineuron spike train distance can inherently fuse spike trains from different neurons. It is demonstrated that the proposed method is able to effectively perform classification in a tactile roughness discrimination task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣欣紫发布了新的文献求助10
1秒前
Owen应助效率采纳,获得10
1秒前
zhaohu47发布了新的文献求助50
1秒前
Owen应助雁塔采纳,获得10
2秒前
3秒前
4秒前
CipherSage应助小飞侠采纳,获得10
5秒前
Nicole发布了新的文献求助10
5秒前
5秒前
清竹完成签到,获得积分10
6秒前
冰勾板勾完成签到,获得积分10
8秒前
8秒前
joe发布了新的文献求助10
8秒前
明理珩发布了新的文献求助10
8秒前
guoqiang发布了新的文献求助10
9秒前
zike发布了新的文献求助20
9秒前
123发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
杨璐骏完成签到,获得积分10
11秒前
12秒前
HHAXX完成签到,获得积分10
13秒前
效率完成签到,获得积分20
13秒前
呼啦啦啦完成签到,获得积分10
13秒前
雷雷发布了新的文献求助10
14秒前
15秒前
16秒前
CipherSage应助尊敬跳跳糖采纳,获得10
16秒前
效率发布了新的文献求助10
17秒前
迷人的如南完成签到 ,获得积分10
17秒前
17秒前
20秒前
豆宇桫发布了新的文献求助10
20秒前
20秒前
DONG发布了新的文献求助10
21秒前
23秒前
Yyy完成签到,获得积分10
23秒前
23秒前
寒冷乐双发布了新的文献求助10
24秒前
李燕发布了新的文献求助10
25秒前
等待幼荷完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5527237
求助须知:如何正确求助?哪些是违规求助? 4617070
关于积分的说明 14556961
捐赠科研通 4555711
什么是DOI,文献DOI怎么找? 2496463
邀请新用户注册赠送积分活动 1476787
关于科研通互助平台的介绍 1448241