Tactile Surface Roughness Categorization With Multineuron Spike Train Distance

Spike(软件开发) 提炼听神经的脉冲 人工智能 计算机科学 火车 模式识别(心理学) 尖峰神经网络 公制(单位) 集合(抽象数据类型) 相似性(几何) 人工神经网络 计算机视觉 工程类 图像(数学) 软件工程 程序设计语言 地理 地图学 运营管理
作者
Zhengkun Yi,Tiantian Xu,Shifeng Guo,Wanfeng Shang,Xinyu Wu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:18 (4): 1835-1845 被引量:13
标识
DOI:10.1109/tase.2020.3021742
摘要

Tactile sensing with spiking neural networks (SNNs) has attracted increasing attention in the past decades. In this article, a novel SNN framework is proposed for the tactile surface roughness categorization task. In contrast to supervised SNN methods such as ReSuMe and Tempotron that require prespecifying target spike trains, the presented method performs the classification through directly comparing the distance between multineuron spike trains. Unlike simple spike train fusion methods using average pairwise spike train distance or pooled spike train distance, the proposed method merges spike trains from different neurons with the multineuron spike train distance, which can capture the complex correlation of multiple spike trains. Specifically, the spike trains are generated via the Izhikevich neurons from tactile signals. The similarity of the multineuron spike trains is computed using the multineuron Victor–Purpura spike train distance, which can be efficiently implemented in an inductive manner. The classification can be performed by incorporating $k$ -nearest neighbors and the multineuron spike train distance as a similarity metric. The proposed framework is quite general, i.e., other multineuron spike train distances and spike train kernel-based methods can be readily incorporated. The effectiveness of the proposed method has been demonstrated on a tactile data set by comparing it with various feature- and spike-based methods. Note to Practitioners —In the soft neuromorphic implementation of biomimetic tactile sensing and the development of the tactile sensing capability in neurobotic systems, the processing and analysis of spike-like tactile signals are quite common. Inspired by human tactile perception, this article proposes a novel supervised spiking neural network method for tactile sensing tasks. The traditional methods have to prespecify target spike trains, which is still an open question. In addition, the current ways to fuse spike trains from multiple neurons are far from mature. This article tackles these two problems using spike train similarity comparison with multineuron spike train distance. The direct spike train similarity comparison avoids the need to prespecify target spike trains. The multineuron spike train distance can inherently fuse spike trains from different neurons. It is demonstrated that the proposed method is able to effectively perform classification in a tactile roughness discrimination task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔的迎荷完成签到,获得积分10
1秒前
1秒前
孔筠淅发布了新的文献求助10
2秒前
5秒前
十七完成签到 ,获得积分10
6秒前
小二郎应助Dr_Chu采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
昏睡的蟠桃举报清脆梦槐求助涉嫌违规
7秒前
8秒前
小矿工应助江氏巨颏虎采纳,获得50
9秒前
100完成签到,获得积分10
9秒前
孔筠淅完成签到,获得积分10
10秒前
明亮冰枫发布了新的文献求助10
11秒前
颇黎完成签到,获得积分10
12秒前
LY完成签到,获得积分10
12秒前
向语堂完成签到,获得积分10
16秒前
饿哭了塞完成签到 ,获得积分10
16秒前
17秒前
huihui完成签到,获得积分10
18秒前
明亮冰枫完成签到,获得积分10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
可可应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
英姑应助科研通管家采纳,获得20
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
wendinfgmei应助科研通管家采纳,获得10
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
lalala应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
可可应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
yana应助科研通管家采纳,获得10
20秒前
satuo应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Building Quantum Computers 1078
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862618
求助须知:如何正确求助?哪些是违规求助? 3405136
关于积分的说明 10643262
捐赠科研通 3128526
什么是DOI,文献DOI怎么找? 1725335
邀请新用户注册赠送积分活动 830924
科研通“疑难数据库(出版商)”最低求助积分说明 779502