Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR)

支持向量机 地下水 卷积神经网络 接收机工作特性 人工神经网络 计算机科学 地形 人工智能 水文学(农业) 数据挖掘 机器学习 地质学 地图学 地理 岩土工程
作者
Mahdi Panahi,Nitheshnirmal Sãdhasivam,Hamid Reza Pourghasemi,Fatemeh Rezaie,Saro Lee
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:588: 125033-125033 被引量:284
标识
DOI:10.1016/j.jhydrol.2020.125033
摘要

Freshwater shortages have become much more common globally in recent years. Water resources that are naturally available beneath the surface are capable of reversing this condition. Spatial modeling of groundwater distribution is an important undertaking that would aid in subsequent conservation and management of groundwater resources. In this study, groundwater potential maps were developed using a machine learning algorithm (MLA) and a deep learning algorithm (DLA), specifically the support vector regression (SVR) and convolution neural network (CNN) functions, respectively. Initially, 140 groundwater datasets were created through an extensive survey and then arbitrarily divided into groups of 100 (70%) and 40 (30%) datasets for model calibration and testing, respectively. Next, 15 groundwater conditioning factors (GCFs), including catchment area (CA), convergence index (CI), convexity (Co), diurnal anisotropic heating (DH), flow path (FP), slope angle (SA), slope height (SH), topographic position index (TPI), terrain ruggedness index (TRI), slope length (LS) factor, mass balance index (MBI), texture (TX), valley depth (VD), land cover (LC), and geology (GG) were produced and applied for model training. Finally, the calibrated model was validated using both training and testing data, and the independent measure of the receiver operating characteristic-area under the curve (ROC-AUC). For validation using training data, the AUC values of CNN and SVR were 0.844 and 0.75, whereas those of CNN and SVR during validation with the testing data were 0.843 and 0.75. Therefore, CNN has better predictive ability than SVR. The findings of this study will help policymakers develop better strategies for conservation and management of groundwater resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱啃大虾发布了新的文献求助10
刚刚
熊小子爱学习完成签到,获得积分10
1秒前
1秒前
科研小白发布了新的文献求助10
1秒前
www发布了新的文献求助10
2秒前
2秒前
力劈华山完成签到,获得积分10
3秒前
3秒前
hxy发布了新的文献求助30
3秒前
FashionBoy应助熊小子爱学习采纳,获得10
3秒前
Sweety-发布了新的文献求助10
4秒前
xuanwu发布了新的文献求助10
4秒前
侯伯军完成签到,获得积分10
4秒前
WangVera完成签到,获得积分10
4秒前
5秒前
科研小白完成签到,获得积分10
6秒前
7秒前
ZY发布了新的文献求助10
8秒前
好吃鱼关注了科研通微信公众号
9秒前
9秒前
好好好好发布了新的文献求助10
9秒前
科研通AI5应助wang佳俊采纳,获得10
12秒前
加湿器发布了新的文献求助10
13秒前
小透明发布了新的文献求助30
13秒前
13秒前
14秒前
英俊的铭应助buhuidanhuixue采纳,获得10
15秒前
ZY完成签到,获得积分10
16秒前
16秒前
科研通AI5应助TomatoRin采纳,获得10
17秒前
兔子发布了新的文献求助10
17秒前
怡然乌发布了新的文献求助10
18秒前
18秒前
子昂加加油完成签到,获得积分10
20秒前
大椒完成签到 ,获得积分10
22秒前
彭一鸣发布了新的文献求助10
22秒前
CipherSage应助Leo采纳,获得10
22秒前
Hello应助王泳茵采纳,获得10
22秒前
Ava应助失眠幻灵采纳,获得30
23秒前
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785889
求助须知:如何正确求助?哪些是违规求助? 3331309
关于积分的说明 10250909
捐赠科研通 3046810
什么是DOI,文献DOI怎么找? 1672193
邀请新用户注册赠送积分活动 801094
科研通“疑难数据库(出版商)”最低求助积分说明 759994