(Invited) Electrosynthesis of Ammonia from Dinitrogen in Non-Aqueous Media

电合成 水介质 水溶液 氨生产 化学 无机化学 电化学 有机化学 物理化学 电极
作者
Pavel V. Cherepanov,Melinda Krebsz,Rebecca Y. Hodgetts,Hoang-Long Du,Bryan H. R. Suryanto,Luis Miguel Azofra,Douglas R. MacFarlane,Alexandr N. Simonov
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (36): 1457-1457
标识
DOI:10.1149/ma2020-01361457mtgabs
摘要

Since early 2018, the nitrogen reduction reaction to ammonia (NRR) has become a focus of active research as an approach to sustainable production of ammonia to support and eventually replace the century-old yet highly robust Haber-Bosch catalytic technology. More than one hundred reports on the successful NRR in aqueous electrolyte solutions catalysed by a comparatively wide range of materials have been published by the end of 2019, though the reported ammonia yield rates (<100 pmol s -1 cm -2 , per geometric surface area of the electrode) and faradaic efficiencies (< 20%) are typically low. In fact, the observed amounts of NH 3 produced in aqueous media are most often comparable to the level of adventitious nitrogen-based contaminants, thereby questioning the genuine nature of the reported NRR. The problems of the aqueous NRR, in the first place low faradaic efficiency, can be effectively addressed by employing aprotic electrolyte media for the electrochemical reduction of dinitrogen. 1-2 Under such conditions, the prevalence of the NRR over the competing and undesirable in this context hydrogen evolution reaction is suppressed due to the significantly higher solubility of N 2 than in water and controlled supply of the proton source. Ammonia electrosynthesis in organic media can be realised in at least two ways — either via direct electrocatalytic reaction, 3-4 or through a lithium-mediated process. 5-6 Both approaches have their pros and cons, and both are currently investigated in our groups. The talk will focus on some of the experimental challenges and pitfalls relevant to the non-aqueous NRR and on our recent progress in this area. References 1. Suryanto, B. H. R.; Du, H.-L.; Wang, D.; Chen, J.; Simonov, A. N.; MacFarlane, D. R., Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nature Catal. 2019, 2 (4), 290-296. 2. Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A.; Statt, M. J.; Blair, S. J.; Mezzavilla, S.; Kibsgaard, J.; Vesborg, P. C. K.; Cargnello, M.; Bent, S. F.; Jaramillo, T. F.; Stephens, I. E. L.; Nørskov, J. K.; Chorkendorff, I., A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570 (7762), 504-508. 3. Zhou, F.; Azofra, L. M.; Ali, M.; Kar, M.; Simonov, A. N.; McDonnell-Worth, C.; Sun, C.; Zhang, X.; MacFarlane, D. R., Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 2017, 10 (12), 2516-2520. 4. Suryanto, B. H. R.; Kang, C. S. M.; Wang, D.; Xiao, C.; Zhou, F.; Azofra, L. M.; Cavallo, L.; Zhang, X.; MacFarlane, D. R., Rational Electrode–Electrolyte Design for Efficient Ammonia Electrosynthesis under Ambient Conditions. ACS Energy Lett. 2018, 3 (6), 1219-1224. 5. Tsuneto, A.; Kudo, A.; Sakata, T., Lithium-mediated electrochemical reduction of high pressure N 2 to NH 3 . J. Electroanal. Chem. 1994, 367 (1–2), 183-188. 6. McEnaney, J. M.; Singh, A. R.; Schwalbe, J. A.; Kibsgaard, J.; Lin, J. C.; Cargnello, M.; Jaramillo, T. F.; Nørskov, J. K., Ammonia synthesis from N 2 and H 2 O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ. Sci. 2017, 10 (7), 1621-1630.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
替我活着发布了新的文献求助10
2秒前
奋斗瑶发布了新的文献求助10
2秒前
刘伟发布了新的文献求助10
3秒前
青云客发布了新的文献求助10
4秒前
SciGPT应助自信筮采纳,获得10
4秒前
4秒前
大旭完成签到 ,获得积分10
4秒前
4秒前
田様应助奋斗龙猫采纳,获得10
5秒前
5秒前
water应助呆萌采纳,获得10
5秒前
柠檬完成签到 ,获得积分10
7秒前
7秒前
chenlc完成签到,获得积分10
7秒前
8秒前
Orange应助贾明灵采纳,获得10
9秒前
9秒前
冰魂应助福明明采纳,获得20
10秒前
雷骋昊完成签到,获得积分10
10秒前
奋斗瑶完成签到,获得积分10
11秒前
13秒前
舒适芫发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
yangyangyang发布了新的文献求助30
14秒前
15秒前
16秒前
16秒前
16秒前
ZZY完成签到,获得积分10
16秒前
852应助青云客采纳,获得10
17秒前
入江完成签到,获得积分10
19秒前
19秒前
20秒前
STZHEN发布了新的文献求助10
20秒前
寂寞的灵发布了新的文献求助10
21秒前
领导范儿应助香蕉梨愁采纳,获得30
22秒前
cc发布了新的文献求助100
22秒前
迷你的颖发布了新的文献求助10
22秒前
劳拉发布了新的文献求助10
23秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871099
求助须知:如何正确求助?哪些是违规求助? 3413235
关于积分的说明 10683580
捐赠科研通 3137659
什么是DOI,文献DOI怎么找? 1731135
邀请新用户注册赠送积分活动 834612
科研通“疑难数据库(出版商)”最低求助积分说明 781247