化学
荧光
基质(水族馆)
试剂
光诱导电子转移
磷酸盐
色谱法
组合化学
生物化学
电子转移
有机化学
量子力学
海洋学
物理
地质学
作者
Yui Sasaki,Éric Leclerc,Vahid Hamedpour,Riku Kubota,Shin‐ya Takizawa,Yasuyuki Sakai,Tsuyoshi Minami
出处
期刊:Analytical Chemistry
[American Chemical Society]
日期:2019-11-12
卷期号:91 (24): 15570-15576
被引量:39
标识
DOI:10.1021/acs.analchem.9b03578
摘要
We believe that "the simpler we are, the more complete we become" is a key concept of chemical sensing systems. In this work, a "turn-on" fluorescence chemosensor array relying on only two self-assembled molecular chemosensors with ability of both qualitative and quantitative detection of phosphorylated saccharides has been developed. The easy-to-prepare chemosensor array was fabricated by in situ mixing of off-the-shelf reagents (esculetin, 4-methylesculetin, and 3-nitrophenylboronic acid). The fluorescence-based saccharide sensing system was carried out using indicator displacement assay accompanied by photoinduced electron transfer (PeT) under various pH conditions. The simultaneous recognition of 14 types of saccharides including glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P) was achieved with a successful classification rate of 100%. We also succeeded in the quantitative analysis of a mixture of glucose (Glc), as an original substrate, G6P and F6P, as enzymatic products in pseudoglycolysis pathway. Finally, levels of Glc and F6P in human induced pluripotent stem (hiPS) cells were indirectly monitored by using our proposed chemosensor array. Glc and F6P in supernatants of hiPS cells were classified by linear discriminant analysis as a pattern recognition model and the observed clusters represent the activity of hiPS cells. The results show the high accuracy of the proposed chemosensor array in detection of phosphorylated and similarly modified saccharides.
科研通智能强力驱动
Strongly Powered by AbleSci AI