Korteweg–de Vries方程
孤子
双线性插值
数学
双线性形式
转化(遗传学)
数学物理
对数
数学分析
对数导数
偏微分方程
共振(粒子物理)
一维空间
物理
量子力学
非线性系统
化学
生物化学
基因
统计
作者
Hongcai Ma,Shupan Yue,Aiping Deng
标识
DOI:10.1016/j.geomphys.2021.104413
摘要
A (2+1)-dimensional new generalized Korteweg-de Vries (ngKdV) equation is educed from a bilinear differential equation by combining the logarithmic transformation u=2(lnf)x. Depending on bilinear equation, we can compute the Hirota N-soliton condition and N-soliton solutions. The D'Alembert type waves of the (2+1)-dimensional ngKdV equation are shown via introducing traveling-wave variables. By dealing with the matching bilinear form, the multiple solitary solution that should fulfill the velocity resonance condition is found in the egKdV equation. Some of the figures of two-soliton molecules and three-soliton molecules are obtained by determining the appropriate arguments.
科研通智能强力驱动
Strongly Powered by AbleSci AI