Clustering Based Feature Data Selection Technique Algorithm for High Dimensional Data: A Novel Approach

聚类分析 特征选择 计算机科学 数据挖掘 模式识别(心理学) 特征(语言学) 人工智能 CURE数据聚类算法 相关聚类 最小冗余特征选择 选择(遗传算法) 单连锁聚类 朴素贝叶斯分类器 算法 支持向量机 语言学 哲学
作者
Amos R,Kowshik N,Suraksha M. S
出处
期刊:Book Publisher International (a part of SCIENCEDOMAIN International) [Book Publisher International (a part of SCIENCEDOMAIN International)]
卷期号:: 33-38
标识
DOI:10.9734/bpi/nvst/v7/5002f
摘要

Feature selection entails identifying a subset of the most useful features that produces compatible results as the original entire set of features. A feature selection algorithm can be assessed in terms of both efficiency and effectiveness. While efficiency is concerned with the time required to find a subset of features, effectiveness is concerned with the quality of the subset of features. This paper proposes and experimentally evaluates a fast clustering-based feature selection algorithm, FAST, based on these criteria.  The FAST algorithm operates in two steps. Graph-theoretic clustering methods are used to partition characteristics into clusters in the initial stage. The most representative feature from each cluster that is strongly related to target classes is chosen in the second stage to construct a subset of features. Because the properties in various clusters are relatively independent, FAST's clustering-based technique is likely to produce a subset of valuable and independent features. We use the efficient Minimum-spanning tree clustering method to ensure FAST's efficiency. An empirical study is conducted to assess the efficiency and effectiveness of the FAST algorithm. FAST and several representative feature selection algorithms, such as FCBF, ReliefF, CFS, Consist, and FOCUS-SF, are compared to four types of well-known classifiers, including the probability-based Naive Bayes, the tree-based C4.5, the instance-based IB1, and the rule-based RIPPER, before and after feature selection. FAST not only provides smaller subsets of features but also improves the performances of the four types of classifiers, according to the findings, which were based on 35 publicly accessible real-world high-dimensional image, microarray, and text data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小丸子发布了新的文献求助10
2秒前
2秒前
2秒前
lizhiqian2024发布了新的文献求助10
4秒前
研友_yLpQrn发布了新的文献求助10
4秒前
万能图书馆应助孙佳婷采纳,获得10
5秒前
370086320发布了新的文献求助30
5秒前
阴影完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助颖颖颖颖子采纳,获得10
5秒前
SL发布了新的文献求助10
6秒前
丘比特应助babybao采纳,获得10
6秒前
7秒前
彭于晏应助1111采纳,获得10
8秒前
8秒前
wangfan完成签到,获得积分10
8秒前
星辰大海应助王京采纳,获得10
9秒前
满满完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
11秒前
单纯曼冬发布了新的文献求助10
11秒前
11秒前
鲸鱼发布了新的文献求助10
12秒前
领导范儿应助370086320采纳,获得10
12秒前
清爽语柳完成签到,获得积分10
12秒前
科研通AI5应助满满采纳,获得10
13秒前
ding应助yunsww采纳,获得10
13秒前
ThomasZ发布了新的文献求助30
14秒前
李爱国应助元谷雪采纳,获得10
14秒前
JUYIN完成签到,获得积分10
15秒前
Logan完成签到,获得积分10
15秒前
呆萌的丹妗完成签到,获得积分20
16秒前
sk夏冰发布了新的文献求助10
16秒前
17秒前
打打应助清爽语柳采纳,获得10
17秒前
黑犬发布了新的文献求助10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790807
求助须知:如何正确求助?哪些是违规求助? 3335722
关于积分的说明 10276182
捐赠科研通 3052250
什么是DOI,文献DOI怎么找? 1675067
邀请新用户注册赠送积分活动 803038
科研通“疑难数据库(出版商)”最低求助积分说明 761020