A deep learning model for burn depth classification using ultrasound imaging

人工智能 卷积神经网络 深度学习 超声波 计算机科学 模式识别(心理学) 分类器(UML) 判别式 接收机工作特性 人工神经网络 编码器 计算机视觉 放射科 医学 机器学习 操作系统
作者
Sangrock Lee,Rahul,James K. Lukan,Tatiana Boyko,Kateryna Zelenova,Basiel Makled,Conner Parsey,Jack Norfleet,Suvranu De
出处
期刊:Journal of The Mechanical Behavior of Biomedical Materials [Elsevier BV]
卷期号:125: 104930-104930 被引量:2
标识
DOI:10.1016/j.jmbbm.2021.104930
摘要

Identification of burn depth with sufficient accuracy is a challenging problem. This paper presents a deep convolutional neural network to classify burn depth based on altered tissue morphology of burned skin manifested as texture patterns in the ultrasound images. The network first learns a low-dimensional manifold of the unburned skin images using an encoder-decoder architecture that reconstructs it from ultrasound images of burned skin. The encoder is then re-trained to classify burn depths. The encoder-decoder network is trained using a dataset comprised of B-mode ultrasound images of unburned and burned ex vivo porcine skin samples. The classifier is developed using B-mode images of burned in situ skin samples obtained from freshly euthanized postmortem pigs. The performance metrics obtained from 20-fold cross-validation show that the model can identify deep-partial thickness burns, which is the most difficult to diagnose clinically, with 99% accuracy, 98% sensitivity, and 100% specificity. The diagnostic accuracy of the classifier is further illustrated by the high area under the curve values of 0.99 and 0.95, respectively, for the receiver operating characteristic and precision-recall curves. A post hoc explanation indicates that the classifier activates the discriminative textural features in the B-mode images for burn classification. The proposed model has the potential for clinical utility in assisting the clinical assessment of burn depths using a widely available clinical imaging device.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
烟花应助YMUSTC采纳,获得10
1秒前
1秒前
窝恁叠完成签到,获得积分10
2秒前
鹜往发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
monere发布了新的文献求助10
4秒前
粘粘1234发布了新的文献求助20
5秒前
无花果应助ykh采纳,获得10
5秒前
5秒前
窝恁叠发布了新的文献求助10
6秒前
沉静盼易发布了新的文献求助10
6秒前
现代的安露完成签到,获得积分10
7秒前
7秒前
小马走日_发布了新的文献求助10
7秒前
8秒前
优秀的千柳完成签到,获得积分10
8秒前
9秒前
所所应助科研通管家采纳,获得10
9秒前
能干的小笼包完成签到,获得积分10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
Dante应助科研通管家采纳,获得10
9秒前
9秒前
wanci应助今天做实验了吗采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Dante应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
9秒前
轻松小张应助科研通管家采纳,获得40
9秒前
10秒前
CodeCraft应助沉静盼易采纳,获得10
10秒前
善学以致用应助ardejiang采纳,获得10
10秒前
10秒前
11秒前
RIXI给RIXI的求助进行了留言
11秒前
12秒前
酷炫的菠萝完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787623
求助须知:如何正确求助?哪些是违规求助? 3333179
关于积分的说明 10260046
捐赠科研通 3048732
什么是DOI,文献DOI怎么找? 1673284
邀请新用户注册赠送积分活动 801756
科研通“疑难数据库(出版商)”最低求助积分说明 760338