已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantifying Meibomian Gland Morphology Using Artificial Intelligence

睑板腺 计算机科学 人工智能 形态学(生物学) 分割 对比度(视觉) 模式识别(心理学) 解剖 生物 医学 放射科 眼睑 遗传学
作者
Jiayun Wang,LI Shixuan,Thao N. Yeh,Rudrasis Chakraborty,Andrew D. Graham,Stella X. Yu,Meng C. Lin
出处
期刊:Optometry and Vision Science [Lippincott Williams & Wilkins]
卷期号:98 (9): 1094-1103 被引量:10
标识
DOI:10.1097/opx.0000000000001767
摘要

Quantifying meibomian gland morphology from meibography images is used for the diagnosis, treatment, and management of meibomian gland dysfunction in clinics. A novel and automated method is described for quantifying meibomian gland morphology from meibography images.Meibomian gland morphological abnormality is a common clinical sign of meibomian gland dysfunction, yet there exist no automated methods that provide standard quantifications of morphological features for individual glands. This study introduces an automated artificial intelligence approach to segmenting individual meibomian gland regions in infrared meibography images and analyzing their morphological features.A total of 1443 meibography images were collected and annotated. The dataset was then divided into development and evaluation sets. The development set was used to train and tune deep learning models for segmenting glands and identifying ghost glands from images, whereas the evaluation set was used to evaluate the performance of the model. The gland segmentations were further used to analyze individual gland features, including gland local contrast, length, width, and tortuosity.A total of 1039 meibography images (including 486 upper and 553 lower eyelids) were used for training and tuning the deep learning model, whereas the remaining 404 images (including 203 upper and 201 lower eyelids) were used for evaluations. The algorithm on average achieved 63% mean intersection over union in segmenting glands, and 84.4% sensitivity and 71.7% specificity in identifying ghost glands. Morphological features of each gland were also fed to a support vector machine for analyzing their associations with ghost glands. Analysis of model coefficients indicated that low gland local contrast was the primary indicator for ghost glands.The proposed approach can automatically segment individual meibomian glands in infrared meibography images, identify ghost glands, and quantitatively analyze gland morphological features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
尊敬幻竹完成签到,获得积分10
10秒前
青尘如墨发布了新的文献求助10
11秒前
14秒前
abala完成签到,获得积分10
15秒前
jimskylxk发布了新的文献求助10
15秒前
笨笨的白梅完成签到,获得积分10
17秒前
17秒前
17秒前
haoliu完成签到,获得积分10
17秒前
18秒前
纯爱发布了新的文献求助10
20秒前
20秒前
mayhem应助科研通管家采纳,获得20
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
abala发布了新的文献求助10
21秒前
伪科学家发布了新的文献求助10
22秒前
科研通AI2S应助风清扬采纳,获得10
23秒前
韩21发布了新的文献求助30
24秒前
LIU发布了新的文献求助30
25秒前
伪科学家完成签到,获得积分20
28秒前
星辰大海应助纯爱采纳,获得30
30秒前
科研通AI6应助jiangxy27采纳,获得10
33秒前
核桃完成签到,获得积分10
34秒前
黑木完成签到 ,获得积分10
35秒前
LIU完成签到,获得积分10
38秒前
Hello应助青尘如墨采纳,获得10
39秒前
Ye完成签到,获得积分10
40秒前
45秒前
46秒前
fanfan要努力完成签到 ,获得积分10
47秒前
长情冰露发布了新的文献求助10
50秒前
青尘如墨发布了新的文献求助10
51秒前
晴天娃娃完成签到,获得积分20
53秒前
jimskylxk完成签到,获得积分10
54秒前
xx完成签到 ,获得积分10
56秒前
59秒前
1分钟前
冷静幻枫发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4228867
求助须知:如何正确求助?哪些是违规求助? 3762288
关于积分的说明 11823831
捐赠科研通 3422609
什么是DOI,文献DOI怎么找? 1878201
邀请新用户注册赠送积分活动 931304
科研通“疑难数据库(出版商)”最低求助积分说明 839131