Bridging kriging believer and expected improvement using bump hunting for expensive black-box optimization

桥接(联网) 克里金 黑匣子 计算机科学 数学优化 环境科学 数学 人工智能 机器学习 计算机安全
作者
Bing Wang,Hemant Kumar Singh,Tapabrata Ray
标识
DOI:10.1145/3449726.3459466
摘要

For several real-world optimization problems, the evaluation of response functions may be expensive, computationally or otherwise. The number of design evaluations one can afford for such problems are therefore severely limited. Surrogate models are commonly used to guide the search for such computationally expensive optimization problems (CEOP). The surrogate models built using a limited number of true evaluations are used to identify the next infill/sampling location. Expected improvement (EI) is a well known infill criteria which balances exploration and exploitation by accounting for both mean and uncertainties in the current model. However, recent studies have shown that, somewhat counter-intuitively, a greedy ("believer") strategy can compete well with EI in solving CEOPs. In this study, we are interested in examining the relative performance of the two infill methods across a range of problems, and identify the influencing factors affecting their performance. Based on the empirical analysis, we further propose an algorithm incorporating the strengths of the two strategies. The numerical experiments demonstrate that the proposed algorithm is able to achieve a competitive performance across a range of problems with diverse characteristics; making it a strong candidate for solving black-box CEOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张强发布了新的文献求助10
刚刚
ppp发布了新的文献求助10
刚刚
Guorsh发布了新的文献求助30
刚刚
YZC完成签到,获得积分10
1秒前
2秒前
alchol完成签到 ,获得积分10
2秒前
朴素的新晴完成签到,获得积分20
2秒前
帅气凝云完成签到,获得积分10
3秒前
思源应助薛定谔的猫采纳,获得10
3秒前
zm发布了新的文献求助10
3秒前
zik应助原yuan采纳,获得10
3秒前
Lucas应助人生若只如初见采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
小芋完成签到,获得积分10
5秒前
Jasper应助倩Q采纳,获得10
5秒前
大龙哥886应助xxx11采纳,获得10
5秒前
6秒前
6秒前
8秒前
9秒前
赘婿应助ppp采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
wzy发布了新的文献求助10
11秒前
乐正熠彤发布了新的文献求助30
12秒前
15秒前
图图发布了新的文献求助10
15秒前
15秒前
16秒前
Wind应助上官踏采纳,获得20
16秒前
田様应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
DEJAVU应助科研通管家采纳,获得50
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
Criminology34应助科研通管家采纳,获得10
17秒前
小胖完成签到,获得积分10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5703383
求助须知:如何正确求助?哪些是违规求助? 5152043
关于积分的说明 15239596
捐赠科研通 4857829
什么是DOI,文献DOI怎么找? 2606705
邀请新用户注册赠送积分活动 1557870
关于科研通互助平台的介绍 1515666