Deep Learning for Adjacent Segment Disease at Preoperative MRI for Cervical Radiculopathy

医学 四分位间距 神经外科 神经组阅片室 麦克内马尔试验 神经放射学家 放射科 磁共振成像 回顾性队列研究 现行程序术语 外科 神经学 数学 统计 精神科
作者
Caroline M.W. Goedmakers,Asad M. Lak,Akiro H. Duey,Alexander W. Senko,Omar Arnaout,Michael W. Groff,Timothy R. Smith,Carmen L. A. Vleggeert‐Lankamp,Hasan A. Zaidi,Aakanksha Rana,Alessandro Boaro
出处
期刊:Radiology [Radiological Society of North America]
卷期号:301 (3): 664-671 被引量:12
标识
DOI:10.1148/radiol.2021204731
摘要

Background Patients who undergo surgery for cervical radiculopathy are at risk for developing adjacent segment disease (ASD). Identifying patients who will develop ASD remains challenging for clinicians. Purpose To develop and validate a deep learning algorithm capable of predicting ASD by using only preoperative cervical MRI in patients undergoing single-level anterior cervical diskectomy and fusion (ACDF). Materials and Methods In this Health Insurance Portability and Accountability Act-compliant study, retrospective chart review was performed for 1244 patients undergoing single-level ACDF in two tertiary care centers. After application of inclusion and exclusion criteria, 344 patients were included, of whom 60% (n = 208) were used for training and 40% for validation (n = 43) and testing (n = 93). A deep learning-based prediction model with 48 convolutional layers was designed and trained by using preoperative T2-sagittal cervical MRI. To validate model performance, a neuroradiologist and neurosurgeon independently provided ASD predictions for the test set. Validation metrics included accuracy, areas under the curve, and F1 scores. The difference in proportion of wrongful predictions between the model and clinician was statistically tested by using the McNemar test. Results A total of 344 patients (median age, 48 years; interquartile range, 41-58 years; 182 women) were evaluated. The model predicted ASD on the 93 test images with an accuracy of 88 of 93 (95%; 95% CI: 90, 99), sensitivity of 12 of 15 (80%; 95% CI: 60, 100), and specificity of 76 of 78 (97%; 95% CI: 94, 100). The neuroradiologist and neurosurgeon provided predictions with lower accuracy (54 of 93; 58%; 95% CI: 48, 68), sensitivity (nine of 15; 60%; 95% CI: 35, 85), and specificity (45 of 78; 58%; 95% CI: 56, 77) compared with the algorithm. The McNemar test on the contingency table demonstrated that the proportion of wrongful predictions was significantly lower by the model (test statistic, 2.000; P < .001). Conclusion A deep learning algorithm that used only preoperative cervical T2-weighted MRI outperformed clinical experts at predicting adjacent segment disease in patients undergoing surgery for cervical radiculopathy. © RSNA, 2021 An earlier incorrect version appeared online. This article was corrected on September 22, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daggeraxe完成签到 ,获得积分10
2秒前
打打应助hellomoon采纳,获得50
2秒前
藏锋完成签到 ,获得积分10
3秒前
一笑而过完成签到 ,获得积分10
6秒前
ChatGPT发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
无幻完成签到 ,获得积分10
11秒前
柯彦完成签到 ,获得积分10
13秒前
phoenixtang发布了新的文献求助20
14秒前
ChatGPT发布了新的文献求助10
16秒前
18秒前
lee完成签到 ,获得积分10
24秒前
27秒前
有血条就敢上完成签到 ,获得积分10
27秒前
mss12138完成签到 ,获得积分10
28秒前
夏木完成签到 ,获得积分10
28秒前
ChatGPT发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
35秒前
不吃香菜完成签到,获得积分10
36秒前
lingling完成签到 ,获得积分10
39秒前
土拨鼠完成签到 ,获得积分10
45秒前
科研通AI6应助Yaaaaaa采纳,获得30
47秒前
sherry完成签到 ,获得积分10
47秒前
静静完成签到 ,获得积分10
50秒前
健忘的晓小完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
55秒前
58秒前
yuyu877完成签到 ,获得积分10
1分钟前
愉快谷芹完成签到 ,获得积分10
1分钟前
roundtree完成签到 ,获得积分10
1分钟前
李爱国应助Cold-Drink-Shop采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
贪玩飞珍完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Aiden完成签到 ,获得积分10
1分钟前
怕黑的纸鹤完成签到 ,获得积分10
1分钟前
1分钟前
标致的世立完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413607
求助须知:如何正确求助?哪些是违规求助? 4530489
关于积分的说明 14123261
捐赠科研通 4445700
什么是DOI,文献DOI怎么找? 2439302
邀请新用户注册赠送积分活动 1431363
关于科研通互助平台的介绍 1408993