A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans

急诊分诊台 医学 深度学习 人工智能 工作量 放射科 机器学习 神经影像学 计算机科学 医疗急救 操作系统 精神科
作者
Xiyue Wang,Tao Shen,Sen Yang,Jun Lan,Yanming Xu,Minghui Wang,Jing Zhang,Xiao Han
出处
期刊:NeuroImage: Clinical [Elsevier BV]
卷期号:32: 102785-102785 被引量:106
标识
DOI:10.1016/j.nicl.2021.102785
摘要

Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast head CT imaging. The diagnostic accuracy of acute ICH on CT varies greatly among radiologists due to the difficulty of interpreting subtle findings and the time pressure associated with the ever-increasing workload. The use of artificial intelligence technology may help automate the process and assist radiologists for more prompt and better decision-making. In this work, we design a deep learning approach that mimics the interpretation process of radiologists, and combines a 2D CNN model and two sequence models to achieve accurate acute ICH detection and subtype classification. Being developed using the extensive 2019-RSNA Brain CT Hemorrhage Challenge dataset with over 25000 CT scans, our deep learning algorithm can accurately classify the acute ICH and its five subtypes with AUCs of 0.988 (ICH), 0.984 (EDH), 0.992 (IPH), 0.996 (IVH), 0.985 (SAH), and 0.983 (SDH), respectively, reaching the accuracy level of expert radiologists. Our method won 1st place among 1345 teams from 75 countries in the RSNA challenge. We have further evaluated our algorithm on two independent external validation datasets with 75 and 491 CT scans, respectively, and our method maintained high AUCs of 0.964 and 0.949 for acute ICH detection. These results have demonstrated the high performance and robust generalization ability of our proposed method, which makes it a useful second-read or triage tool that can facilitate routine clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
2秒前
正直宝贝发布了新的文献求助10
3秒前
3秒前
sjr发布了新的文献求助10
3秒前
善学以致用应助anyujie采纳,获得10
3秒前
搜集达人应助岁岁十六-采纳,获得10
4秒前
4秒前
4秒前
科研通AI5应助至幸采纳,获得10
4秒前
4秒前
阮楷瑞发布了新的文献求助10
6秒前
传奇3应助燕万怨采纳,获得10
8秒前
核桃小小苏完成签到,获得积分10
8秒前
若1发布了新的文献求助10
8秒前
A高发布了新的文献求助10
8秒前
8秒前
9秒前
mili发布了新的文献求助10
9秒前
路143250发布了新的文献求助10
9秒前
土豆菜卷发布了新的文献求助10
9秒前
10秒前
雪L完成签到,获得积分10
10秒前
10秒前
仔wang完成签到,获得积分10
11秒前
11秒前
11秒前
至幸完成签到,获得积分20
11秒前
CipherSage应助稳重的悟空采纳,获得10
12秒前
xiaoleihu完成签到,获得积分10
12秒前
12秒前
Jasper应助老木虫采纳,获得10
12秒前
852应助虚掩的门采纳,获得10
13秒前
林林完成签到 ,获得积分10
13秒前
淡定的半鬼完成签到,获得积分10
13秒前
13秒前
风筝完成签到,获得积分10
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786497
求助须知:如何正确求助?哪些是违规求助? 3332246
关于积分的说明 10254811
捐赠科研通 3047627
什么是DOI,文献DOI怎么找? 1672635
邀请新用户注册赠送积分活动 801445
科研通“疑难数据库(出版商)”最低求助积分说明 760204