Coronary Computed Tomography Angiography in Prediction of First Coronary Events

作者
Göran Bergström,Gunnar Engström,Elias Björnson,Martin Adiels,Jonas S. O. Andersson,Therese Andersson,Carl‐Johan Carlhäll,Kerstin Cederlund,David Erlinge,Erika Fagman,Elin Good,Anders Gummesson,Emil Hagström,Stefan James,Magnus Janzon,Ioannis Katsoularis,Jeanette Kuhl,Henrik Löfmark,Hanna Markstad,Jonas Oldgren
出处
期刊:JAMA [American Medical Association]
标识
DOI:10.1001/jama.2025.21077
摘要

Importance Risk stratification strategies in primary prevention of coronary events lack precision. Objective To determine whether prediction of first coronary events is improved by adding information on coronary atherosclerosis from coronary computed tomography angiography (CCTA) to a model using the pooled cohort equation (PCE) risk score tool and the coronary artery calcification score (CACS). Design, Setting, and Participants Observational cohort study including individuals aged 50 to 64 years randomly recruited from the general population and examined at 6 university hospitals in Sweden from 2013 to 2018, with a median follow-up of 7.8 years. A sample of 30 154 individuals underwent cardiopulmonary imaging, physical examinations, routine laboratory tests, questionnaires, and/or functional tests. This study included 24 791 individuals without previous cardiovascular disease for whom high-quality CCTA images were available. Events were followed up via registers until September 2024. Exposures The information used from the CCTA images was the extent of coronary atherosclerosis (segment involvement score), presence of noncalcified atherosclerosis, and presence of coronary obstructive disease (stenosis ≥50%). Main Outcomes and Measures The outcome was a composite of first occurrence of nonfatal myocardial infarction or death from coronary heart disease. Results During follow-up, 304 coronary events occurred. Segment involvement scores of 3 to 4 and greater than 4 and presence of noncalcified atherosclerosis were associated with hazard ratios of 2.71 (95% CI, 1.34-5.44), 5.27 (95% CI, 2.50-11.07), and 1.66 (95% CI, 1.23-2.22), respectively. In a model based on the PCE and CACS, CCTA-derived data improved risk discrimination (C statistic improved from 0.764 to 0.779; P = .004) and risk reclassification (net reclassification improvement of 0.133 [95% CI, 0.031-0.165]), conferred a net correct upward reclassification of 14.2% in those with events and incorrectly classified 1.6% of participants not experiencing an event into a higher-risk category. Because of the low event rate in the cohort, reclassification mainly occurred in the group classified as at low risk (<5%) according to the PCE. Conclusions and Relevance Information on coronary atherosclerosis from CCTA modestly improved risk prediction beyond traditional risk factors and CACS in identifying individuals at risk of coronary events and in need of primary prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助周运来采纳,获得10
刚刚
ss发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
非鱼发布了新的文献求助10
3秒前
3秒前
ddd完成签到 ,获得积分10
4秒前
恰好喜欢发布了新的文献求助10
4秒前
4秒前
4秒前
难过衬衫完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
亦晴发布了新的文献求助20
5秒前
5秒前
6秒前
希望天下0贩的0应助棠棠采纳,获得10
6秒前
6秒前
身为风帆发布了新的文献求助10
6秒前
Zh发布了新的文献求助20
7秒前
SJR发布了新的文献求助10
7秒前
7秒前
petrichor发布了新的文献求助10
7秒前
难过衬衫发布了新的文献求助10
7秒前
8秒前
8秒前
jessie完成签到,获得积分10
8秒前
螃蟹完成签到,获得积分10
8秒前
xukaixuan001发布了新的文献求助10
9秒前
畅快的道之完成签到,获得积分10
9秒前
pms发布了新的文献求助10
9秒前
Skilixta完成签到,获得积分10
9秒前
司徒迎曼发布了新的文献求助10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693319
求助须知:如何正确求助?哪些是违规求助? 5092294
关于积分的说明 15211264
捐赠科研通 4850295
什么是DOI,文献DOI怎么找? 2601689
邀请新用户注册赠送积分活动 1553480
关于科研通互助平台的介绍 1511450