材料科学
阴极
杂质
电压
容量损失
阳极
分析化学(期刊)
膨胀率
纵横比(航空)
化学工程
航程(航空)
工作(物理)
高压
碳纤维
自行车
表面积体积比
电容器
纳米技术
降级(电信)
复合材料
电极
阈值电压
纳米颗粒
比能量
低压
作者
Xin Tang,Qiang Wang,Kaibo Zhang,DongDong Yin,Hechao Xu,Jinhan Teng,Weifeng Deng,Yukun Ren,Hao Li,Sicheng Liu,Luyu Lei,Xiaolong Cai,Yuxiao Gao,Jing Li
出处
期刊:Small
[Wiley]
日期:2026-01-21
卷期号:: e12398-e12398
标识
DOI:10.1002/smll.202512398
摘要
ABSTRACT Impurities remain the key challenge for Na 4‐x Fe 3‐x (PO 4 ) 2‐x P 2 O 7 (NFPP, 0 ≤ x ≤ 1) cathode materials in sodium‐ion batteries (SIBs), addressed by modulating the Na 2 FeP 2 O 7 : Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 ratio in this study. The optimal Na 3.5 Fe 2.5 (PO 4 ) 1.5 P 2 O 7 (Na 3.5 Fe 2.5 PP) material at a 1:3 ratio with the least impurities is scalably synthesized via a dual‐iron‐source system. Crucially, this study reveals the illusion of seemingly high discharge capacities caused by the “voltage tailing” phenomenon in some cathode materials, defining the “effective voltage range” as 2.4–3.7 V in full‐cells (N/P ratio = 1.1) through the triple‐electrode measurements. Within this window, Na 3.5 Fe 2.5 PP delivers: (1) the highest initial charge/discharge capacities (116.05 / 102.33 mAh g −1 at 0.1 C); (2) excellent rate capability (74.23 mAh g −1 at 30 C), and (3) superior cycling performance (75.4% capacity retention ratio after 10 000 cycles at 20C). Finally, combined with hard carbon (HC) anode, Na 3.5 Fe 2.5 PP//HC pouch cells exhibit excellent safety, low‐temperature performance (88.8% capacity retention ratio at −30°C), rate capability (84.1% capacity retention ratio at 30 C), and cycling stability (83.25% capacity retention ratio after 2300 cycles), enabling practical energy storage applications. This work refines NFPP purity enhancement strategies and reveals the capacity mismatch between half‐cell and full‐cell—a finding broadly applicable to SIBs using HC anodes, thereby facilitating practical SIBs applications in energy storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI