已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Harnessing Computational Biology for Exact Linear B-Cell Epitope Prediction: A Novel Amino Acid Composition-Based Feature Descriptor

表位 特征(语言学) 计算生物学 计算机科学 人工智能 特征向量 支持向量机 随机森林 模式识别(心理学) 抗原 生物 免疫学 语言学 哲学
作者
Saravanan Vijayakumar,N. Gautham
出处
期刊:Omics A Journal of Integrative Biology [Mary Ann Liebert, Inc.]
卷期号:19 (10): 648-658 被引量:158
标识
DOI:10.1089/omi.2015.0095
摘要

Proteins embody epitopes that serve as their antigenic determinants. Epitopes occupy a central place in integrative biology, not to mention as targets for novel vaccine, pharmaceutical, and systems diagnostics development. The presence of T-cell and B-cell epitopes has been extensively studied due to their potential in synthetic vaccine design. However, reliable prediction of linear B-cell epitope remains a formidable challenge. Earlier studies have reported discrepancy in amino acid composition between the epitopes and non-epitopes. Hence, this study proposed and developed a novel amino acid composition-based feature descriptor, Dipeptide Deviation from Expected Mean (DDE), to distinguish the linear B-cell epitopes from non-epitopes effectively. In this study, for the first time, only exact linear B-cell epitopes and non-epitopes have been utilized for developing the prediction method, unlike the use of epitope-containing regions in earlier reports. To evaluate the performance of the DDE feature vector, models have been developed with two widely used machine-learning techniques Support Vector Machine and AdaBoost-Random Forest. Five-fold cross-validation performance of the proposed method with error-free dataset and dataset from other studies achieved an overall accuracy between nearly 61% and 73%, with balance between sensitivity and specificity metrics. Performance of the DDE feature vector was better (with accuracy difference of about 2% to 12%), in comparison to other amino acid-derived features on different datasets. This study reflects the efficiency of the DDE feature vector in enhancing the linear B-cell epitope prediction performance, compared to other feature representations. The proposed method is made as a stand-alone tool available freely for researchers, particularly for those interested in vaccine design and novel molecular target development for systems therapeutics and diagnostics: https://github.com/brsaran/LBEEP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XL神放完成签到 ,获得积分10
刚刚
Ava应助万灵竹采纳,获得10
2秒前
若有光发布了新的文献求助10
3秒前
3秒前
李海洋发布了新的文献求助10
4秒前
热心市民赵先生完成签到,获得积分10
8秒前
9秒前
10秒前
12秒前
Hello应助黑球采纳,获得10
15秒前
万灵竹发布了新的文献求助10
16秒前
牛豁完成签到,获得积分10
16秒前
orixero应助敏感的板栗采纳,获得10
16秒前
hahaha发布了新的文献求助10
17秒前
dennisysz发布了新的文献求助10
20秒前
20秒前
21秒前
zhenyu发布了新的文献求助30
21秒前
余味应助zhuzhuxia采纳,获得10
22秒前
好运大王完成签到 ,获得积分10
22秒前
皮凡发布了新的文献求助10
23秒前
宽宽完成签到,获得积分10
25秒前
二巨头发布了新的文献求助10
26秒前
28秒前
khaosyi完成签到 ,获得积分10
30秒前
JamesPei应助若有光采纳,获得10
30秒前
31秒前
小杨发布了新的文献求助10
32秒前
斯文飞槐完成签到,获得积分10
34秒前
35秒前
42秒前
maodianandme发布了新的文献求助10
42秒前
lifenghou完成签到 ,获得积分10
44秒前
黑球发布了新的文献求助10
46秒前
慕青应助不能说的秘密采纳,获得10
48秒前
48秒前
49秒前
派小星完成签到 ,获得积分10
50秒前
HJJHJH发布了新的文献求助10
53秒前
maodianandme发布了新的文献求助10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777501
求助须知:如何正确求助?哪些是违规求助? 3322845
关于积分的说明 10212016
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667229
邀请新用户注册赠送积分活动 798030
科研通“疑难数据库(出版商)”最低求助积分说明 758193