Harnessing Computational Biology for Exact Linear B-Cell Epitope Prediction: A Novel Amino Acid Composition-Based Feature Descriptor

表位 特征(语言学) 计算生物学 计算机科学 人工智能 特征向量 支持向量机 随机森林 模式识别(心理学) 抗原 生物 免疫学 语言学 哲学
作者
Saravanan Vijayakumar,N. Gautham
出处
期刊:Omics A Journal of Integrative Biology [Mary Ann Liebert]
卷期号:19 (10): 648-658 被引量:185
标识
DOI:10.1089/omi.2015.0095
摘要

Abstract Proteins embody epitopes that serve as their antigenic determinants. Epitopes occupy a central place in integrative biology, not to mention as targets for novel vaccine, pharmaceutical, and systems diagnostics development. The presence of T-cell and B-cell epitopes has been extensively studied due to their potential in synthetic vaccine design. However, reliable prediction of linear B-cell epitope remains a formidable challenge. Earlier studies have reported discrepancy in amino acid composition between the epitopes and non-epitopes. Hence, this study proposed and developed a novel amino acid composition-based feature descriptor, Dipeptide Deviation from Expected Mean (DDE), to distinguish the linear B-cell epitopes from non-epitopes effectively. In this study, for the first time, only exact linear B-cell epitopes and non-epitopes have been utilized for developing the prediction method, unlike the use of epitope-containing regions in earlier reports. To evaluate the performance of the DDE feature vector, models have been developed with two widely used machine-learning techniques Support Vector Machine and AdaBoost-Random Forest. Five-fold cross-validation performance of the proposed method with error-free dataset and dataset from other studies achieved an overall accuracy between nearly 61% and 73%, with balance between sensitivity and specificity metrics. Performance of the DDE feature vector was better (with accuracy difference of about 2% to 12%), in comparison to other amino acid-derived features on different datasets. This study reflects the efficiency of the DDE feature vector in enhancing the linear B-cell epitope prediction performance, compared to other feature representations. The proposed method is made as a stand-alone tool available freely for researchers, particularly for those interested in vaccine design and novel molecular target development for systems therapeutics and diagnostics: https://github.com/brsaran/LBEEP
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
加贝发布了新的文献求助10
2秒前
Dylan完成签到 ,获得积分10
3秒前
18746005898发布了新的文献求助10
3秒前
3秒前
Zhukic发布了新的文献求助10
4秒前
InnovaTion关注了科研通微信公众号
4秒前
N1koooooo发布了新的文献求助10
4秒前
BB发布了新的文献求助10
4秒前
忘忧草完成签到,获得积分10
4秒前
复杂如音完成签到,获得积分10
5秒前
didi发布了新的文献求助10
5秒前
7秒前
8秒前
9秒前
浮浮沉沉发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
单纯嚣发布了新的文献求助10
11秒前
12秒前
12秒前
didi完成签到,获得积分10
12秒前
goftmac发布了新的文献求助20
12秒前
共享精神应助BB采纳,获得30
13秒前
时尚的灵寒完成签到,获得积分10
13秒前
小茵茵完成签到,获得积分10
13秒前
YAN77完成签到,获得积分10
13秒前
茅十八完成签到,获得积分10
14秒前
鳗鱼梦寒发布了新的文献求助10
14秒前
888关闭了888文献求助
15秒前
浮浮沉沉完成签到,获得积分10
15秒前
doctorduanmu发布了新的文献求助10
15秒前
王十三完成签到 ,获得积分10
15秒前
bbhk完成签到,获得积分10
16秒前
聪慧可愁完成签到 ,获得积分10
16秒前
鲤鱼羊应助Yss采纳,获得30
16秒前
紫愿完成签到 ,获得积分10
17秒前
Shelly完成签到 ,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515075
求助须知:如何正确求助?哪些是违规求助? 4608637
关于积分的说明 14512496
捐赠科研通 4544875
什么是DOI,文献DOI怎么找? 2490297
邀请新用户注册赠送积分活动 1472221
关于科研通互助平台的介绍 1443980