亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Monitoring seasonal effects in vegetation areas with Sentinel-1 SAR and Sentinel-2 optic satellite images

支持向量机 遥感 归一化差异植被指数 合成孔径雷达 卫星 土地覆盖 上下文图像分类 植被(病理学) 随机森林 计算机科学 人工智能 统计分类 模式识别(心理学)
作者
Ahmet Batuhan Polat,Ozgun Akcay,Fusun Balik Sanli
出处
期刊:Arabian Journal of Geosciences [Springer Nature]
卷期号:15 (7)
标识
DOI:10.1007/s12517-022-09947-x
摘要

Classification for land cover mapping is of great importance for accurate analysis and temporal monitoring of natural resources. In this study, the classification process was carried out using four synthetic aperture radar (SAR) and optical satellite images obtained in different seasons at equal intervals within a year. In addition to combining optical and SAR data for classification, single optical and SAR images have been classified separately. Thus, the effect of combining SAR and optical images on classification accuracy was examined. Moreover, the normalized difference vegetation index (NDVI), which is a vegetation index, was added to the image data, and the seasonal effect on accuracy was examined for the region with dense vegetation. In classification, three different object-oriented classification algorithms, support vector machines (SVM), random forest algorithm (RF), and k-nearest neighbors algorithm (kNN), were used. Finally, the number of training samples used for classification was increased, and its effect on accuracy was revealed in the study. The lowest overall classification accuracy was found to be 40.46% with classification using single SAR images, while the highest classification accuracy was found to be 95.12% as a result of the classification of the image obtained by combined SAR and optical satellite images. Furthermore, an additional testing area was considered to validate the method, and consistent results were obtained in that area as well. As a result, monitoring of the natural resources with high accuracy has been discussed, considering the data sources, machine learning methods, and the seasonal effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助趣味儿童234采纳,获得20
28秒前
只如初完成签到 ,获得积分10
33秒前
科研通AI6应助Wj采纳,获得10
34秒前
1分钟前
1分钟前
飘逸焱完成签到 ,获得积分10
2分钟前
张海新完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
充电宝应助欣喜秋天采纳,获得10
3分钟前
涛1完成签到 ,获得积分10
3分钟前
搜集达人应助zzzzz采纳,获得10
4分钟前
4分钟前
赧赧完成签到 ,获得积分10
4分钟前
欣喜秋天发布了新的文献求助10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
4分钟前
4分钟前
彭于晏应助欣喜秋天采纳,获得10
4分钟前
Jolly发布了新的文献求助30
4分钟前
wanci应助555采纳,获得10
4分钟前
5分钟前
欣喜秋天发布了新的文献求助10
5分钟前
5分钟前
123123发布了新的文献求助10
5分钟前
5分钟前
123123完成签到,获得积分10
5分钟前
zzzzz发布了新的文献求助10
5分钟前
5分钟前
英俊的铭应助欣喜秋天采纳,获得10
6分钟前
6分钟前
CHX发布了新的文献求助10
6分钟前
欣喜秋天完成签到,获得积分10
6分钟前
ls完成签到,获得积分10
6分钟前
6分钟前
WYDNBDX2013发布了新的文献求助10
6分钟前
今后应助科研通管家采纳,获得10
6分钟前
MchemG应助科研通管家采纳,获得10
6分钟前
MchemG应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
彭于晏应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459261
求助须知:如何正确求助?哪些是违规求助? 4564938
关于积分的说明 14297314
捐赠科研通 4490053
什么是DOI,文献DOI怎么找? 2459507
邀请新用户注册赠送积分活动 1449159
关于科研通互助平台的介绍 1424676