Optimizing the radiomics-machine-learning model based on non-contrast enhanced CT for the simplified risk categorization of thymic epithelial tumors: A large cohort retrospective study

医学 无线电技术 接收机工作特性 回顾性队列研究 胸腺瘤 队列 放射科 分类 机器学习 人工智能 内科学 病理 计算机科学
作者
Xiu-Long Feng,Shengzhong Wang,Hao-han Chen,Yu-Xiang Huang,Yong-Kang Xin,Tao Zhang,Dongliang Cheng,Mao Li,Xiuli Li,Chenxi Liu,Yu‐Chuan Hu,Wen Wang,Guangbin Cui,Hai‐Yan Nan
出处
期刊:Lung Cancer [Elsevier BV]
卷期号:166: 150-160 被引量:19
标识
DOI:10.1016/j.lungcan.2022.03.007
摘要

This study aimed to establish and compare the radiomics machine learning (ML) models based on non-contrast enhanced computed tomography (NECT) and clinical features for predicting the simplified risk categorization of thymic epithelial tumors (TETs).A total of 509 patients with pathologically confirmed TETs from January 2009 to May 2018 were retrospectively enrolled, consisting of 238 low-risk thymoma (LRT), 232 high-risk thymoma (HRT), and 39 thymic carcinoma (TC), and were divided into training (n = 433) and testing cohorts (n = 76) according to the admission time. Volumes of interest (VOIs) covering the whole tumor were manually segmented on preoperative NECT images. A total of 1218 radiomic features were extracted from the VOIs, and 4 clinical variables were collected from the hospital database. Fourteen ML models, along with varied feature selection strategies, were used to establish triple-classification models using the radiomic features (radiomic models), while clinical-radiomic models were built after combining with the clinical variables. The diagnostic accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) of radiologist assessment, the radiomic and clinical-radiomic models were evaluated on the testing cohort.The Support Vector Machine (SVM) clinical-radiomic model demonstrated the highest AUC of 0.841 (95% CI 0.820 to 0.861) on the cross-validation result and reached an AUC of 0.844 (95% CI 0.793 to 0.894) in the testing cohort. For the one-vs-rest question of LRT vs HRT + TC, the sensitivity, specificity, and accuracy reached 80.00%, 63.41%, and 71.05%, respectively. For HRT vs LRT + TC, they reached 60.53%, 78.95%, and 69.74%. For TC vs LRT + HRT they reached 33.33%, 98.63%, and 96.05%, respectively. Compared with the radiomic models, superior diagnostic efficacy was demonstrated for most clinical-radiomics models, and the AUC of the Bernoulli Naive Bayes model was significantly improved. Radiologist2's assessment achieved a higher AUC of 0.813 (95% CI: 0.756-0.8761) than other radiologists, which was slightly lower than the SVM clinical-radiomic model. Combined with other evaluation indicators, SVM, as the best ML model, demonstrated the potential of predicting the simplified risk categorization of TETs with superior predictive performance to that of radiologists' assessment.Most of the ML models are promising in predicting the simplified TETs risk categorization with superior efficacy to that of radiologists' assessment, especially the SVM models, demonstrated the integration of ML with NECT may be valuable in aiding the diagnosis and treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助zhiping采纳,获得10
刚刚
昏睡的妙梦完成签到 ,获得积分10
刚刚
博修发布了新的文献求助10
刚刚
1秒前
单薄靖儿发布了新的文献求助10
1秒前
1秒前
徐小发布了新的文献求助20
2秒前
婷1223发布了新的文献求助10
2秒前
2秒前
李爱国应助啦啦啦啦啦采纳,获得10
3秒前
3秒前
茴香豆完成签到,获得积分10
3秒前
可爱的函函应助锅锅采纳,获得10
3秒前
似水流年完成签到,获得积分10
3秒前
nssm发布了新的文献求助10
3秒前
彩色耳机完成签到,获得积分10
4秒前
充电宝应助ly采纳,获得10
4秒前
CipherSage应助Agoni采纳,获得10
4秒前
LYQ完成签到 ,获得积分10
4秒前
滚筒洗衣机完成签到,获得积分10
5秒前
Ye完成签到,获得积分10
5秒前
5秒前
Jasper应助直率铁身采纳,获得10
5秒前
5秒前
刘雪松完成签到,获得积分10
5秒前
辛慧完成签到,获得积分20
6秒前
领导范儿应助冷静尔云采纳,获得10
6秒前
7788999完成签到,获得积分10
6秒前
sb发布了新的文献求助10
7秒前
华仔应助徐小采纳,获得10
7秒前
Akim应助徐小采纳,获得30
7秒前
LZQ应助徐小采纳,获得10
7秒前
十二应助白白的珠珠采纳,获得10
7秒前
酷炫夏烟发布了新的文献求助10
7秒前
tong完成签到,获得积分10
7秒前
8秒前
无招完成签到,获得积分20
9秒前
李西瓜完成签到 ,获得积分10
9秒前
活泼啤酒完成签到 ,获得积分0
9秒前
丶丶发布了新的文献求助10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968934
求助须知:如何正确求助?哪些是违规求助? 3513835
关于积分的说明 11170238
捐赠科研通 3249167
什么是DOI,文献DOI怎么找? 1794650
邀请新用户注册赠送积分活动 875278
科研通“疑难数据库(出版商)”最低求助积分说明 804755