Real-time automated diagnosis of colorectal cancer invasion depth using a deep learning model with multimodal data (with video)

医学 结直肠癌 人工智能 深度学习 结肠镜检查 癌症 内科学 计算机科学
作者
Zihua Lu,Y Xu,Liwen Yao,Wei Zhou,Wei Gong,Genhua Yang,Mingwen Guo,Beiping Zhang,Xu Huang,Chunping He,Rui Zhou,Yunchao Deng,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:95 (6): 1186-1194.e3 被引量:20
标识
DOI:10.1016/j.gie.2021.11.049
摘要

The optical diagnosis of colorectal cancer (CRC) invasion depth with white light (WL) and image-enhanced endoscopy (IEE) remains challenging. We aimed to construct and validate a 2-modal deep learning-based system, incorporated with both WL and IEE images (named Endo-CRC) in estimating the invasion depth of CRC.Samples were retrospectively obtained from 3 hospitals in China. We combined WL and IEE images into image pairs. Altogether, 337,278 image pairs from 268 noninvasive and superficial CRC and 181,934 image pairs from 82 deep CRC were used for training. A total of 296,644 and 4528 image pairs were used for internal and external tests and for comparison with endoscopists. Thirty-five videos were used for evaluating the real-time performance of the Endo-CRC system. Two deep learning models, solely using either WL (model W) or IEE images (model I), were constructed to compare with Endo-CRC.The accuracies of Endo-CRC in internal image tests with and without advanced CRC were 91.61% and 93.78%, respectively, and 88.65% in the external test, which did not include advanced CRC. In an endoscopist-machine competition, Endo-CRC achieved an expert comparable accuracy of 88.11% and the highest sensitivity compared with all endoscopists. In a video test, Endo-CRC achieved an accuracy of 100.00%. Compared with model W and model I, Endo-CRC had a higher accuracy (per image pair: 91.61% vs 88.27% compared with model I and 91.61% vs 81.32% compared with model W).The Endo-CRC system has great potential for assisting in CRC invasion depth diagnosis and may be well applied in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扶苏小雨完成签到,获得积分10
刚刚
刚刚
vivre223完成签到,获得积分10
刚刚
江湖有九哥完成签到,获得积分10
1秒前
2秒前
jialinzhou完成签到,获得积分10
2秒前
梧寂发布了新的文献求助10
2秒前
yyy完成签到,获得积分10
2秒前
jialin完成签到 ,获得积分10
6秒前
399发布了新的文献求助10
6秒前
yxy999完成签到,获得积分10
7秒前
wahaha完成签到,获得积分10
8秒前
ding应助喜悦香萱采纳,获得10
8秒前
MyXu完成签到,获得积分10
8秒前
shin发布了新的文献求助10
9秒前
彩色的蓝天完成签到,获得积分10
9秒前
11秒前
笨鸟先飞完成签到 ,获得积分10
12秒前
岁岁十六-发布了新的文献求助10
15秒前
芝芝完成签到,获得积分10
19秒前
19秒前
GB完成签到 ,获得积分10
20秒前
20秒前
青衣完成签到,获得积分10
20秒前
冷傲紫烟完成签到 ,获得积分10
21秒前
www258357发布了新的文献求助10
24秒前
guangshuang完成签到 ,获得积分10
24秒前
Ethan完成签到,获得积分10
24秒前
kalani完成签到,获得积分10
26秒前
一天不学浑身难受完成签到 ,获得积分10
28秒前
yu完成签到 ,获得积分10
29秒前
曲书文完成签到,获得积分10
30秒前
31秒前
李健应助科研通管家采纳,获得10
32秒前
脑洞疼应助科研通管家采纳,获得10
32秒前
香蕉觅云应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
共享精神应助科研通管家采纳,获得10
32秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782796
求助须知:如何正确求助?哪些是违规求助? 3328174
关于积分的说明 10234921
捐赠科研通 3043175
什么是DOI,文献DOI怎么找? 1670456
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 758998