Learning Strategies in Protein Directed Evolution

上位性 定向分子进化 定向进化 计算机科学 蛋白质工程 合成生物学 突变 计算生物学 人工智能 功能(生物学) 突变 机器学习 生物 遗传学 生物化学 基因 突变体
作者
Xavier F. Cadet,Jean Christophe Gelly,Aster van Noord,Frédéric Cadet,Carlos G. Acevedo‐Rocha
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 225-275 被引量:11
标识
DOI:10.1007/978-1-0716-2152-3_15
摘要

Synthetic biology is a fast-evolving research field that combines biology and engineering principles to develop new biological systems for medical, pharmacological, and industrial applications. Synthetic biologists use iterative "design, build, test, and learn" cycles to efficiently engineer genetic systems that are reliable, reproducible, and predictable. Protein engineering by directed evolution can benefit from such a systematic engineering approach for various reasons. Learning can be carried out before starting, throughout or after finalizing a directed evolution project. Computational tools, bioinformatics, and scanning mutagenesis methods can be excellent starting points, while molecular dynamics simulations and other strategies can guide engineering efforts. Similarly, studying protein intermediates along evolutionary pathways offers fascinating insights into the molecular mechanisms shaped by evolution. The learning step of the cycle is not only crucial for proteins or enzymes that are not suitable for high-throughput screening or selection systems, but it is also valuable for any platform that can generate a large amount of data that can be aided by machine learning algorithms. The main challenge in protein engineering is to predict the effect of a single mutation on one functional parameter-to say nothing of several mutations on multiple parameters. This is largely due to nonadditive mutational interactions, known as epistatic effects-beneficial mutations present in a genetic background may not be beneficial in another genetic background. In this work, we provide an overview of experimental and computational strategies that can guide the user to learn protein function at different stages in a directed evolution project. We also discuss how epistatic effects can influence the success of directed evolution projects. Since machine learning is gaining momentum in protein engineering and the field is becoming more interdisciplinary thanks to collaboration between mathematicians, computational scientists, engineers, molecular biologists, and chemists, we provide a general workflow that familiarizes nonexperts with the basic concepts, dataset requirements, learning approaches, model capabilities and performance metrics of this intriguing area. Finally, we also provide some practical recommendations on how machine learning can harness epistatic effects for engineering proteins in an "outside-the-box" way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pumpkin发布了新的文献求助10
1秒前
欣喜忆曼发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
跳跃虔发布了新的文献求助10
4秒前
7秒前
8秒前
8秒前
qq158014169发布了新的文献求助10
8秒前
来者发布了新的文献求助10
8秒前
9秒前
小二郎应助你说采纳,获得10
10秒前
10秒前
11秒前
xiaojian_291发布了新的文献求助10
11秒前
shenerqing发布了新的文献求助10
12秒前
懒懒大王完成签到,获得积分10
12秒前
13秒前
lixiaolu发布了新的文献求助10
14秒前
Diss发布了新的文献求助10
14秒前
zanilia发布了新的文献求助10
14秒前
16秒前
zhang005on发布了新的文献求助10
16秒前
16秒前
17秒前
Jasper应助冰可乐超大杯采纳,获得10
17秒前
YP发布了新的文献求助10
19秒前
19秒前
称心寒松完成签到,获得积分10
20秒前
田様应助zanilia采纳,获得10
20秒前
20秒前
炒酸奶发布了新的文献求助10
20秒前
charry发布了新的文献求助10
22秒前
23秒前
小项发布了新的文献求助10
23秒前
23秒前
Jasper应助Yuxzzr采纳,获得10
24秒前
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789328
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269432
捐赠科研通 3050794
什么是DOI,文献DOI怎么找? 1674162
邀请新用户注册赠送积分活动 802530
科研通“疑难数据库(出版商)”最低求助积分说明 760693