Iron deficiency promotes aortic media degeneration by activating endoplasmic reticulum stress-mediated IRE1 signaling pathway

未折叠蛋白反应 XBP1型 内质网 ATF6 切碎 氧化应激 细胞凋亡 细胞生物学 信号转导 化学 生物 内分泌学 内科学 医学 生物化学 RNA剪接 基因 核糖核酸
作者
Feng Shi,Zhiwei Wang,Qi Wu,Xiaohan Zhong,Min Zhang,Bowen Li,Wei Ren,Shun Yuan,Yuanyang Chen
出处
期刊:Pharmacological Research [Elsevier BV]
卷期号:183: 106366-106366 被引量:16
标识
DOI:10.1016/j.phrs.2022.106366
摘要

Aortic dissection (AD) is a macrovascular disease which is pathologically characterized by aortic media degeneration (AMD). Our team's previous research found that iron deficiency (ID) promoted the formation of AMD through presentative research. In this study, we aimed to investigate the underlying mechanism of ID promoting AMD formation. The human aortic tissues were harvested from AD patients and organ donors. ApoE-/- mice were simultaneously given AngII infusion and low-iron feed to investigate the relationship between ID and AD. The IRE1-XBP1-CHOP signal axis of endoplasmic reticulum (ER) stress was selectively inhibited with 4μ8C. Iron contents were detected by Perls staining. The expression of iron metabolism and ER stress-relative proteins were analyzed by IF and western blotting. Apoptosis rates of aortic tissue and ASMCs were detected by TUNEL staining and flow cytometry, and ROS content was also measured by the flow cytometry. ID was accompanied by ER stress in patients with AD. Among the three signaling pathways of ER stress in ID-induced AMD, proteins of IRE1, PERK and ATF6 signaling pathways were up-regulated by 2.65 times, 1.14 times and 1.24 times, respectively. ID was positively related to ER stress, mitochondrial oxidative stress and aortic media apoptosis in vivo and in vitro assays, while 4μ8C reversed the severity of ER stress and AMD. ID could activate ER stress by eliciting mitochondrial oxidative stress to activate the IRE1-XBP1-CHOP signaling pathway in the ER, which accelerated the apoptosis of ASMCs in aortic media, thus promoting the formation of AMD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
观妙散人完成签到,获得积分10
2秒前
为你等候完成签到,获得积分10
3秒前
听寒完成签到,获得积分10
3秒前
山楂完成签到,获得积分10
5秒前
MISSIW完成签到,获得积分10
5秒前
6秒前
Hua完成签到,获得积分10
6秒前
7秒前
myyyyy完成签到 ,获得积分10
9秒前
闪闪的斑马完成签到,获得积分10
9秒前
寂寞的诗云完成签到,获得积分10
10秒前
bluesmile完成签到,获得积分10
11秒前
封迎松完成签到 ,获得积分10
11秒前
cocobear完成签到 ,获得积分10
12秒前
14秒前
Alan完成签到 ,获得积分10
17秒前
serenity711完成签到 ,获得积分10
18秒前
1111111111完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助20
20秒前
21秒前
22秒前
25秒前
revew666完成签到,获得积分10
28秒前
欣喜的薯片完成签到 ,获得积分10
29秒前
Tin完成签到,获得积分10
30秒前
30秒前
pep完成签到 ,获得积分10
33秒前
34秒前
Yuki完成签到 ,获得积分10
34秒前
37秒前
不爱吃韭菜完成签到 ,获得积分10
37秒前
眼睛大安珊完成签到 ,获得积分10
37秒前
奋斗的小张完成签到 ,获得积分10
40秒前
yuanletong完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
42秒前
可怜的游戏完成签到,获得积分10
42秒前
42秒前
43秒前
小杨完成签到,获得积分10
43秒前
lu完成签到,获得积分10
44秒前
高分求助中
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4236520
求助须知:如何正确求助?哪些是违规求助? 3770183
关于积分的说明 11841026
捐赠科研通 3426808
什么是DOI,文献DOI怎么找? 1880714
邀请新用户注册赠送积分活动 933251
科研通“疑难数据库(出版商)”最低求助积分说明 840148