Vehicle Trajectory Prediction Considering Multi-Feature Independent Encoding

弹道 特征(语言学) 编码(内存) 计算机科学 人工智能 数据挖掘 模式识别(心理学) 物理 天文 语言学 哲学
作者
Xin Xu,Xiaolan Wang,Yansong Wang,Jiaqi Cao
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4135360
摘要

Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL Vehicle Trajectory Prediction Considering Multi-Feature Independent Encoding 20 Pages Posted: 13 Jun 2022 See all articles by Xin XuXin XuShanghai University of Engineering ScienceXiaolan WangShanghai University of Engineering ScienceYansong WangShanghai University of Engineering ScienceJiaqi CaoShanghai University of Engineering Science Abstract Today, self-driving cars are already on the roads of urban life. However, driving safety remains a huge challenge. Trajectory prediction of traffic targets is one of the important tasks of autonomous driving environment perception system, and its output trajectory can provide necessary information for decision control and path planning. This paper proposes a novel scheme that considers multi-feature independent encoding trajectory prediction (MFIE). MFIE is an independent coded trajectory prediction algorithm that consists of space-time interaction module and trajectory prediction module and considers speed characteristics and road characteristics. In the spatiotemporal interaction module, an undirected and weightless static traffic graph is used to represent the interaction between vehicles, and multiple graph convolution blocks are used to perform data mining on the historical information of target vehicles, capture temporal features, and process spatial interaction features. In the trajectory prediction module, three long short-term memory (LSTM) encoders were used to encode the trajectory feature, motion feature and road constraint feature independently. The three hidden features were splicing into a tensor, and the LSTM decoder was used to predict the future trajectory. On data sets such as Apollo and NGSIM, the method in this paper has better prediction accuracy than traditional model-driven and data-driven methods. It can provide a basis for vehicle path planning on highways and urban roads, and is of great significance to the safety of autonomous driving. Keywords: Self-driving cars, Trajectory prediction, Long short-term memory, Traffic graph, Multi-feature independent encoding Suggested Citation: Suggested Citation Xu, Xin and Wang, Xiaolan and Wang, Yansong and Cao, Jiaqi, Vehicle Trajectory Prediction Considering Multi-Feature Independent Encoding. Available at SSRN: https://ssrn.com/abstract=4135360 Xin Xu Shanghai University of Engineering Science ( email ) shanghai, 201620China Xiaolan Wang (Contact Author) Shanghai University of Engineering Science ( email ) shanghai, 201620China Yansong Wang Shanghai University of Engineering Science ( email ) shanghai, 201620China Jiaqi Cao Shanghai University of Engineering Science ( email ) shanghai, 201620China Download This Paper Open PDF in Browser Do you have a job opening that you would like to promote on SSRN? Place Job Opening Paper statistics Downloads 0 Abstract Views 0 PlumX Metrics Feedback Feedback to SSRN Feedback (required) Email (required) Submit If you need immediate assistance, call 877-SSRNHelp (877 777 6435) in the United States, or +1 212 448 2500 outside of the United States, 8:30AM to 6:00PM U.S. Eastern, Monday - Friday. Submit a Paper Section 508 Text Only Pages SSRN Quick Links SSRN Solutions Research Paper Series Conference Papers Partners in Publishing Jobs & Announcements Newsletter Sign Up SSRN Rankings Top Papers Top Authors Top Organizations About SSRN SSRN Objectives Network Directors Presidential Letter Announcements Contact us FAQs Copyright Terms and Conditions Privacy Policy We use cookies to help provide and enhance our service and tailor content. To learn more, visit Cookie Settings. This page was processed by aws-apollo4 in 0.312 seconds

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬应助芽芽采纳,获得10
1秒前
传奇3应助ly采纳,获得10
3秒前
隐形曼青应助柚子采纳,获得10
4秒前
4秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
一一应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
一一应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
孙燕应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
孙燕应助科研通管家采纳,获得10
6秒前
zyx完成签到,获得积分10
6秒前
田様应助xun采纳,获得10
6秒前
丰富的小甜瓜完成签到,获得积分10
6秒前
领导范儿应助Candy采纳,获得10
6秒前
吴龙完成签到,获得积分10
7秒前
9秒前
10秒前
巧巧艾完成签到,获得积分10
10秒前
努力努力发布了新的文献求助10
10秒前
看起来不太强完成签到,获得积分10
13秒前
13秒前
lin完成签到,获得积分10
14秒前
14秒前
辛勤含巧完成签到,获得积分10
14秒前
15秒前
vincent完成签到,获得积分10
15秒前
15秒前
明芬发布了新的文献求助10
15秒前
火火火完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
Samuel_完成签到,获得积分20
19秒前
19秒前
KaiZI发布了新的文献求助10
19秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870767
求助须知:如何正确求助?哪些是违规求助? 3412901
关于积分的说明 10681767
捐赠科研通 3137295
什么是DOI,文献DOI怎么找? 1730882
邀请新用户注册赠送积分活动 834426
科研通“疑难数据库(出版商)”最低求助积分说明 781154