Social Referral Programs for Freemium Platforms

介绍 收入 业务 质量(理念) 营销 互联网隐私 医学 计算机科学 家庭医学 财务 哲学 认识论
作者
Rodrigo Belo,Ting Li
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (12): 8933-8962 被引量:11
标识
DOI:10.1287/mnsc.2022.4301
摘要

We examine how freemium platforms can design social referral programs to encourage growth and engagement without sacrificing revenue. On the one hand, social referral programs generate new referrals from users who would not have paid for the premium features. On the other hand, they also attract new referrals from users who would have paid but prefer to invite others, resulting in more referrals but fewer paying users. We use data from a large-scale randomized field experiment in an online dating platform to assess the effects of adding referrals programs to freemium platforms and changing the referral requirements on users’ behavior, namely, on their decisions to invite, pay, and engage with the platform. We find that introducing referral programs in freemium platforms can significantly contribute to increasing the number of referrals at the expense of revenue. Platforms can avoid the loss in revenue by reserving some premium features exclusively for paying users. We also find that increasing referral requirements in social referral programs can work as a double-edged sword. Increasing the referral threshold results in more referrals and higher total revenue. Yet these benefits appear to come at a cost. Users become less engaged, decreasing the value of the platform for all users. We explore two mechanisms that help to explain the differences in users’ social engagement. Finally, and contrary to prior findings, we find that the quality of the referrals is not affected by the referral requirements. We discuss the theoretical and practical implications of our research. This paper was accepted by Chris Forman, information systems. Funding: This work was funded by Fundac¸ão para a Ciência e a Tecnologia [UID/ ECO/00124/2019, UIDB/00124/2020, UIDP/00124/2020, and Social Sciences DataLab - PINFRA/22209/2016], POR Lisboa, and POR Norte [Social Sciences DataLab, PINFRA/22209/2016]. Supplemental Material: The online appendix and data are available at https://doi.org/10.1287/mnsc.2022.4301 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
estrella发布了新的文献求助50
刚刚
阳光荠完成签到,获得积分20
刚刚
2秒前
科研小桶发布了新的文献求助10
2秒前
2秒前
4秒前
英吉利25发布了新的文献求助10
5秒前
6秒前
Lin发布了新的文献求助10
6秒前
nihaoooo完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
孙俪发布了新的文献求助10
15秒前
上官若男应助xiaoliu采纳,获得10
16秒前
赵凯完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
结实初翠发布了新的文献求助10
20秒前
20秒前
一一应助贺贺很帅采纳,获得10
21秒前
kingwill完成签到,获得积分0
23秒前
24秒前
无花果应助名字要学术123采纳,获得10
24秒前
浪里白条发布了新的文献求助10
24秒前
冰魂应助科研通管家采纳,获得10
25秒前
FelixChen应助科研通管家采纳,获得10
25秒前
FelixChen应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
FelixChen应助科研通管家采纳,获得10
25秒前
FelixChen应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
gqp应助科研通管家采纳,获得10
25秒前
25秒前
28秒前
29秒前
30秒前
32秒前
33秒前
教育厮完成签到,获得积分10
33秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865172
求助须知:如何正确求助?哪些是违规求助? 3407446
关于积分的说明 10654546
捐赠科研通 3131540
什么是DOI,文献DOI怎么找? 1727141
邀请新用户注册赠送积分活动 832169
科研通“疑难数据库(出版商)”最低求助积分说明 780175