Optimum design of steel columns filled with concrete via genetic algorithm: environmental impact and cost analysis

钢筋 结构工程 复合数 栏(排版) 弯曲 钢筋 材料科学 遗传算法 优化设计 复合材料 工程类 计算机科学 数学 数学优化 连接(主束) 机器学习
作者
Sane Alves Guimarães,Diego Klein,Adenílcia Fernanda Grobério Calenzani,Élcio Cassimiro Alves
出处
期刊:REM - International Engineering Journal [SciELO]
卷期号:75 (2): 117-128 被引量:10
标识
DOI:10.1590/0370-44672021750034
摘要

Abstract The use of concrete-filled tubular columns as part of structural systems has steadily increased throughout the years. The growing demand for structural elements of this nature is a direct result of the possibility to use various cross-section shapes that have increased strength, along with resistance to fire and other corrosive agents. The main objective of this article is to present the formulation for optimizing the design of composite columns in accordance with prescriptions from ABNT NBR 16239: 2013, considering financial cost and CO2 emission during manufacturing as objective functions. A Genetic Algorithm was used to solve three examples of composite tubular columns subjected to combined bending and compression, considering major axis and unsymmetrical bending. The financial cost in Brazilian currency and the CO2 emission in kilograms attributed to manufacturing concrete-filled composite columns were calculated and the optimization procedure was implemented on composite columns featuring CHS, RHS and SHS steel members. This study also considers the different concrete strengths and the optional inclusion of longitudinal rebar. For the cases analyzed, the financially and environmentally optimum design corresponds to a CHS composite column with no longitudinal rebar and the highest concrete strength tested, except when unsymmetrical bending is applied, in which case the optimum solution includes longitudinal rebar. Furthermore, results indicate that structural steel has the highest impact on the CO2 emission of the optimal designs. For the column with longitudinal rebar, the reinforcement steel presents the second highest financial impact, while concrete is responsible for the highest influence on CO2 emission.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
哈哈哈完成签到 ,获得积分10
1秒前
1秒前
YM完成签到,获得积分10
1秒前
小蘑菇应助清醒采纳,获得10
2秒前
3秒前
3秒前
充电宝应助zxn课题组采纳,获得10
4秒前
4秒前
咕咕的鸽子完成签到 ,获得积分10
6秒前
Yannah完成签到,获得积分10
6秒前
6秒前
高中生完成签到,获得积分10
6秒前
6秒前
熊逍发布了新的文献求助10
6秒前
小猪完成签到,获得积分10
7秒前
Re发布了新的文献求助30
7秒前
怕触电的电源完成签到 ,获得积分10
8秒前
evermore发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
JIANJUNZHOU完成签到,获得积分10
8秒前
11秒前
家秋白发布了新的文献求助10
11秒前
11秒前
12秒前
新伟张发布了新的文献求助10
12秒前
勤劳的水之完成签到,获得积分10
12秒前
怕孤独的访云完成签到 ,获得积分10
14秒前
马慕蕊完成签到,获得积分20
14秒前
14秒前
17秒前
18秒前
朴素浩然发布了新的文献求助10
18秒前
小白发布了新的文献求助10
18秒前
无极微光应助王也采纳,获得20
20秒前
21秒前
科研通AI6.1应助superman采纳,获得10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737622
求助须知:如何正确求助?哪些是违规求助? 5373577
关于积分的说明 15335873
捐赠科研通 4881014
什么是DOI,文献DOI怎么找? 2623229
邀请新用户注册赠送积分活动 1572031
关于科研通互助平台的介绍 1528857