Missing data in clinical trials: from clinical assumptions to statistical analysis using pattern mixture models

缺少数据 计算机科学 临床试验 统计 统计分析 计量经济学 数学 医学 内科学
作者
Bohdana Ratitch,Michael O’Kelly,Robert Tosiello
出处
期刊:Pharmaceutical Statistics [Wiley]
卷期号:12 (6): 337-347 被引量:143
标识
DOI:10.1002/pst.1549
摘要

The need to use rigorous, transparent, clearly interpretable, and scientifically justified methodology for preventing and dealing with missing data in clinical trials has been a focus of much attention from regulators, practitioners, and academicians over the past years. New guidelines and recommendations emphasize the importance of minimizing the amount of missing data and carefully selecting primary analysis methods on the basis of assumptions regarding the missingness mechanism suitable for the study at hand, as well as the need to stress‐test the results of the primary analysis under different sets of assumptions through a range of sensitivity analyses. Some methods that could be effectively used for dealing with missing data have not yet gained widespread usage, partly because of their underlying complexity and partly because of lack of relatively easy approaches to their implementation. In this paper, we explore several strategies for missing data on the basis of pattern mixture models that embody clear and realistic clinical assumptions. Pattern mixture models provide a statistically reasonable yet transparent framework for translating clinical assumptions into statistical analyses. Implementation details for some specific strategies are provided in an Appendix (available online as Supporting Information), whereas the general principles of the approach discussed in this paper can be used to implement various other analyses with different sets of assumptions regarding missing data. Copyright © 2013 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
鑫缘发布了新的文献求助10
3秒前
wanci应助ELAN采纳,获得10
3秒前
wangjuan完成签到,获得积分10
4秒前
ding应助自觉的人龙采纳,获得10
5秒前
超帅孱完成签到,获得积分10
7秒前
电饭锅发布了新的文献求助10
8秒前
那些年星光璀璨关注了科研通微信公众号
10秒前
欣喜的人龙完成签到 ,获得积分10
10秒前
mzrrong完成签到 ,获得积分10
11秒前
杨朝进发布了新的文献求助20
11秒前
13秒前
15秒前
殷勤的晓亦完成签到,获得积分10
16秒前
123完成签到,获得积分10
17秒前
wangjuan发布了新的文献求助10
18秒前
19秒前
嘉冉发布了新的文献求助10
19秒前
simon完成签到,获得积分10
21秒前
zzz发布了新的文献求助10
21秒前
真实的尔风关注了科研通微信公众号
22秒前
月亮不营业完成签到 ,获得积分10
23秒前
电饭锅完成签到,获得积分10
24秒前
Ava应助嘉冉采纳,获得10
25秒前
1区完成签到,获得积分10
25秒前
陈龙发布了新的文献求助10
27秒前
美满糜完成签到,获得积分10
29秒前
zzz完成签到,获得积分10
29秒前
搜集达人应助灿若繁星采纳,获得10
32秒前
风一样的风干肠完成签到 ,获得积分10
33秒前
Lucas应助云水雾心采纳,获得10
33秒前
贤惠的又菡完成签到 ,获得积分10
33秒前
星星发布了新的文献求助10
34秒前
34秒前
Luna完成签到 ,获得积分10
35秒前
小摩尔完成签到 ,获得积分10
35秒前
36秒前
小蘑菇应助普通用户30号采纳,获得150
39秒前
41秒前
芥楠完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5562293
求助须知:如何正确求助?哪些是违规求助? 4647282
关于积分的说明 14681188
捐赠科研通 4589066
什么是DOI,文献DOI怎么找? 2517850
邀请新用户注册赠送积分活动 1490843
关于科研通互助平台的介绍 1462103