亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China

湿地 遥感 土地覆盖 中国 植被(病理学) 环境科学 北京 卫星 水文学(农业) 地理 地质学 土地利用 生态学 考古 航空航天工程 病理 医学 岩土工程 工程类 生物
作者
Iryna Dronova,Peng Gong,Lin Wang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:115 (12): 3220-3236 被引量:232
标识
DOI:10.1016/j.rse.2011.07.006
摘要

Productive wetland systems at land–water interfaces that provide unique ecosystem services are challenging to study because of water dynamics, complex surface cover and constrained field access. We applied object-based image analysis and supervised classification to four 32-m Beijing-1 microsatellite images to examine broad-scale surface cover composition and its change during November 2007–March 2008 low water season at Poyang Lake, the largest freshwater lake-wetland system in China (> 4000 km2). We proposed a novel method for semi-automated selection of training objects in this heterogeneous landscape using extreme values of spectral indices (SIs) estimated from satellite data. Dynamics of the major wetland cover types (Water, Mudflat, Vegetation and Sand) were investigated both as transitions among primary classes based on maximum membership value, and as changes in memberships to all classes even under no change in a primary class. Fuzzy classification accuracy was evaluated as match frequencies between classification outcome and a) the best reference candidate class (MAX function) and b) any acceptable reference class (RIGHT function). MAX-based accuracy was relatively high for Vegetation (≥ 90%), Water (≥ 82%), Mudflat (≥ 76%) and the smallest-area Sand (≥ 75%) in all scenes; these scores improved with the RIGHT function to 87–100%. Classification uncertainty assessed as the proportion of fuzzy object area within a class at a given fuzzy threshold value was the highest for all classes in November 2007, and consistently higher for Mudflat than for other classes in all scenes. Vegetation was the dominant class in all scenes, occupying 41.2–49.3% of the study area. Object memberships to Vegetation mostly declined from November 2007 to February 2008 and increased substantially only in February–March 2008, possibly reflecting growing season conditions and grazing. Spatial extent of Water both declined and increased during the study period, reflecting precipitation and hydrological events. The “fuzziest” Mudflat class was involved in major detected transitions among classes and declined in classification accuracy by March 2008, representing a key target for finer-scale research. Future work should introduce Vegetation sub-classes reflecting differences in phenology and alternative methods to discriminate Mudflat from other classes. Results can be used to guide field sampling and top-down landscape analyses in this wetland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美罗培南完成签到,获得积分10
刚刚
wyx发布了新的文献求助10
4秒前
5秒前
生动烙发布了新的文献求助10
11秒前
今后应助wyx采纳,获得10
12秒前
满天星完成签到 ,获得积分10
16秒前
17秒前
科研通AI5应助无误采纳,获得10
17秒前
章鱼完成签到,获得积分10
21秒前
wykion完成签到,获得积分0
22秒前
生动烙完成签到,获得积分10
22秒前
皮皮不皮发布了新的文献求助10
23秒前
shuang完成签到 ,获得积分10
35秒前
44秒前
皮皮不皮完成签到,获得积分10
44秒前
无误发布了新的文献求助10
49秒前
bc应助科研通管家采纳,获得30
54秒前
bc应助科研通管家采纳,获得30
54秒前
bc应助科研通管家采纳,获得30
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
李洁完成签到 ,获得积分10
56秒前
李渤海发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
迟迟不吃吃完成签到 ,获得积分10
1分钟前
Jasper应助无私的蛋挞采纳,获得10
1分钟前
1分钟前
1分钟前
Yang2完成签到,获得积分10
1分钟前
1分钟前
麦斯发布了新的文献求助10
1分钟前
zhouleiwang发布了新的文献求助10
1分钟前
住在魔仙堡的鱼完成签到 ,获得积分10
1分钟前
1分钟前
繁星完成签到,获得积分20
1分钟前
bingbing发布了新的文献求助10
1分钟前
打工人不酷完成签到 ,获得积分10
1分钟前
酷炫橘子完成签到,获得积分10
1分钟前
深情安青应助麦斯采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779050
求助须知:如何正确求助?哪些是违规求助? 3324712
关于积分的说明 10219547
捐赠科研通 3039767
什么是DOI,文献DOI怎么找? 1668404
邀请新用户注册赠送积分活动 798648
科研通“疑难数据库(出版商)”最低求助积分说明 758487