Chemometric Analysis Of Inter- And Intra-Molecular Diversification Factors By A Machine Learning Simplex Approach. A Review And Research On Astragalus Saponins.

人工智能 支持向量机 计算生物学 计算机科学 机器学习 数量结构-活动关系 主成分分析 生物
作者
Abir Sarraj-Laabidi,Habib Messai,Asma Hammami-Semmar,Nabil Semmar
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science Publishers]
卷期号:17 (25): 2820-2848 被引量:1
标识
DOI:10.2174/1568026617666170719165552
摘要

Metabolisms represent highly organized systems characterized by strong regulations satisfying the mass conservation principle. This makes a whole chemical resource to be competitively shared between several ways at both intra-and inter-molecular scales. Whole resource sharing can be statistically associated with a constant sum-unit constraint which represents the basis of simplex mixture rule. In this work, a new simplex-based simulation approach was developed to learn scaffold information on metabolic processes controlling molecular diversity from a wide set of observed chemical structures. Starting from a dataset of chemical structures classified into p clusters, a machine learning process was applied by linearly combining the p clusters j and randomly sampling a constant number (n) of molecules according to different clusters’ weights (wj/w) given by Scheffe’s mixture matrix. At the output of mixture design, molecular linear combinations lead to calculate barycentric molecules integrating the characteristics of the different weighted clusters. The N mixtures-design was iterated by bootstrap technique leading to extensive exploration of chemical variability between and within clusters. Finally, the K response matrices issued from K iterated mixture designs were averaged to calculate a smoothed matrix containing scaffold information on regulation processes responsible for molecular diversification at inter- and intra-molecular (atomic) scales. This matrix was used as a backbone for graphical analysis of positive and negative trends between atomic characteristics (chemical substitutions) at both mentioned scales. This new simplex approach was illustrated by cycloartane-based saponins of Astragalus genus by combining three desmosylation clusters characterized by relative glycosylation levels of different aglycones’ carbons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助读书的时候采纳,获得30
3秒前
9秒前
10秒前
10秒前
18°N天水色完成签到,获得积分10
11秒前
12秒前
LMY发布了新的文献求助10
14秒前
mamahaha发布了新的文献求助10
14秒前
泡沫完成签到,获得积分10
15秒前
Exc完成签到,获得积分0
19秒前
汉堡包应助读书的时候采纳,获得30
20秒前
20秒前
剑鱼么么哒完成签到,获得积分10
20秒前
20秒前
咳咳发布了新的文献求助10
23秒前
于思枫完成签到,获得积分10
23秒前
24秒前
情怀应助flyingF采纳,获得30
25秒前
结实罡发布了新的文献求助10
25秒前
26秒前
现代含芙完成签到,获得积分10
26秒前
高强发布了新的文献求助10
28秒前
小蘑菇应助牧紊采纳,获得10
30秒前
咳咳完成签到,获得积分10
31秒前
大雄发布了新的文献求助10
33秒前
杨茜然完成签到 ,获得积分10
34秒前
青岚完成签到,获得积分10
35秒前
苗条的一兰关注了科研通微信公众号
36秒前
天天快乐应助读书的时候采纳,获得30
37秒前
Destiny发布了新的文献求助10
37秒前
40秒前
41秒前
41秒前
pluto应助麦子采纳,获得10
44秒前
如意枫叶发布了新的文献求助10
44秒前
45秒前
huxy发布了新的文献求助10
46秒前
47秒前
bingbing发布了新的文献求助10
48秒前
你才是小哭包完成签到 ,获得积分10
48秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4044620
求助须知:如何正确求助?哪些是违规求助? 3582504
关于积分的说明 11386653
捐赠科研通 3309337
什么是DOI,文献DOI怎么找? 1821635
邀请新用户注册赠送积分活动 893842
科研通“疑难数据库(出版商)”最低求助积分说明 815875