Making the most of AI and machine learning in organizations and strategy research: Supervised machine learning, causal inference, and matching models

推论 因果推理 匹配(统计) 人工智能 机器学习 计算机科学 选择偏差 样品(材料) 在线机器学习 数据科学 主动学习(机器学习) 计量经济学 数学 统计 化学 色谱法
作者
Jason Rathje,Riitta Katila,Philipp Reineke
出处
期刊:Strategic Management Journal [Wiley]
卷期号:45 (10): 1926-1953 被引量:4
标识
DOI:10.1002/smj.3604
摘要

Abstract Research Summary We spotlight the use of machine learning in two‐stage matching models to deal with sample selection bias. Recent advances in machine learning have unlocked new empirical possibilities for inductive theorizing. In contrast, the opportunities to use machine learning in regression studies involving large‐scale data with many covariates and a causal claim are still less well understood. Our core contribution is to guide researchers in the use of machine learning approaches to choosing matching variables for enhanced causal inference in propensity score matching models. We use an analysis of real‐world technology invention data of public–private relationships to demonstrate the method and find that machine learning can provide an alternative approach to ad hoc matching. However, as with any method, it is also important to understand its limitations. Managerial Summary This article explores the use of machine learning to enhance decision‐making, particularly in addressing sample selection bias in large‐scale datasets. The rapid development of AI and machine learning offers new, powerful tools especially for digital ecosystems where complex data and causal relationships are complex to analyze. We offer managers and stakeholders insight into the effective integration of machine learning for selecting critical variables in propensity score matching models. Through a detailed examination of real‐world data on technology inventions within public–private relationships, we demonstrate the effectiveness of machine learning as a robust alternative to traditional matching methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助_Charmo采纳,获得10
4秒前
车访枫完成签到,获得积分10
4秒前
大不里士完成签到,获得积分10
4秒前
5秒前
6秒前
玉玊发布了新的文献求助10
8秒前
g8-BT发布了新的文献求助10
9秒前
orixero应助爱听歌素采纳,获得10
9秒前
9秒前
高贵的子默完成签到,获得积分10
10秒前
uusmile完成签到,获得积分20
11秒前
awrawsaf发布了新的文献求助10
11秒前
深情安青应助zhaojrr采纳,获得10
13秒前
坦率夕阳完成签到,获得积分10
13秒前
13秒前
李爱国应助玉玊采纳,获得10
14秒前
16秒前
jessie发布了新的文献求助20
17秒前
18秒前
19秒前
小米粥完成签到,获得积分10
19秒前
19秒前
SXM发布了新的文献求助10
20秒前
随缘完成签到,获得积分10
21秒前
bwm完成签到,获得积分20
21秒前
21秒前
_Charmo发布了新的文献求助10
23秒前
小二郎应助yuchao_0110采纳,获得10
24秒前
独特冬天完成签到,获得积分10
24秒前
BaodaGUODNG完成签到,获得积分10
25秒前
25秒前
bwm发布了新的文献求助10
25秒前
29秒前
鸡鱼蚝发布了新的文献求助10
30秒前
12366666发布了新的文献求助20
30秒前
31秒前
34秒前
34秒前
~静发布了新的文献求助10
35秒前
SXM完成签到,获得积分10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796465
求助须知:如何正确求助?哪些是违规求助? 3341712
关于积分的说明 10307381
捐赠科研通 3058317
什么是DOI,文献DOI怎么找? 1678107
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762838