AI-Assisted Body Composition Assessment Using CT Imaging in Colorectal Cancer Patients: Predictive Capacity for Sarcopenia and Malnutrition Diagnosis

肌萎缩 营养不良 医学 人体测量学 结直肠癌 切断 内科学 癌症 物理疗法 量子力学 物理
作者
Virginia Soria-Utrilla,Francisco José Sánchez-Torralvo,Fiorella Ximena Palmas-Candia,Rocío Fernández‐Jiménez,Fernanda Mucarzel-Suarez-Arana,Patricia Guirado-Peláez,Gabriel Olveira,José Manuel García‐Almeida,Rosa Burgos-Peláez
出处
期刊:Nutrients [Multidisciplinary Digital Publishing Institute]
卷期号:16 (12): 1869-1869 被引量:3
标识
DOI:10.3390/nu16121869
摘要

(1) Background: The assessment of muscle mass is crucial in the nutritional evaluation of patients with colorectal cancer (CRC), as decreased muscle mass is linked to increased complications and poorer prognosis. This study aims to evaluate the utility of AI-assisted L3 CT for assessing body composition and determining low muscle mass using both the Global Leadership Initiative on Malnutrition (GLIM) criteria for malnutrition and the European Working Group on Sarcopenia in Older People (EWGSOP2) criteria for sarcopenia in CRC patients prior to surgery. Additionally, we aim to establish cutoff points for muscle mass in men and women and propose their application in these diagnostic frameworks. (2) Methods: This retrospective observational study included CRC patients assessed by the Endocrinology and Nutrition services of the Regional University Hospitals of Malaga, Virgen de la Victoria of Malaga, and Vall d’Hebrón of Barcelona from October 2018 to July 2023. A morphofunctional assessment, including anthropometry, bioimpedance analysis (BIA), and handgrip strength, was conducted to apply the GLIM criteria for malnutrition and the EWGSOP2 criteria for sarcopenia. Body composition evaluation was performed through AI-assisted analysis of CT images at the L3 level. ROC analysis was used to determine the predictive capacity of variables derived from the CT analysis regarding the diagnosis of low muscle mass and to describe cutoff points. (3) Results: A total of 586 patients were enrolled, with a mean age of 68.4 ± 10.2 years. Using the GLIM criteria, 245 patients (41.8%) were diagnosed with malnutrition. Applying the EWGSOP2 criteria, 56 patients (9.6%) were diagnosed with sarcopenia. ROC curve analysis for the skeletal muscle index (SMI) showed a strong discriminative capacity of muscle area to detect low fat-free mass index (FFMI) (AUC = 0.82, 95% CI 0.77–0.87, p < 0.001). The identified SMI cutoff for diagnosing low FFMI was 32.75 cm2/m2 (Sn 77%, Sp 64.3%; AUC = 0.79, 95% CI 0.70–0.87, p < 0.001) in women, and 39.9 cm2/m2 (Sn 77%, Sp 72.7%; AUC = 0.85, 95% CI 0.80–0.90, p < 0.001) in men. Additionally, skeletal muscle area (SMA) showed good discriminative capacity for detecting low appendicular skeletal muscle mass (ASMM) (AUC = 0.71, 95% CI 0.65–0.76, p < 0.001). The identified SMA cutoff points for diagnosing low ASMM were 83.2 cm2 (Sn 76.7%, Sp 55.3%; AUC = 0.77, 95% CI 0.69–0.84, p < 0.001) in women and 112.6 cm2 (Sn 82.3%, Sp 58.6%; AUC = 0.79, 95% CI 0.74–0.85, p < 0.001) in men. (4) Conclusions: AI-assisted body composition assessment using CT is a valuable tool in the morphofunctional evaluation of patients with colorectal cancer prior to surgery. CT provides quantitative data on muscle mass for the application of the GLIM criteria for malnutrition and the EWGSOP2 criteria for sarcopenia, with specific cutoff points established for diagnostic use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaoyh_gc完成签到,获得积分10
刚刚
万能图书馆应助Keith采纳,获得10
1秒前
顾矜应助今天做实验了吗采纳,获得10
1秒前
3秒前
无花果应助土星采纳,获得10
4秒前
脑洞疼应助荔枝采纳,获得30
4秒前
ty发布了新的文献求助10
4秒前
5秒前
快乐枫叶完成签到,获得积分10
6秒前
伶俐碧萱完成签到 ,获得积分10
6秒前
田様应助YaoHui采纳,获得10
6秒前
7秒前
河豚不擦鞋完成签到 ,获得积分10
7秒前
HUAJIAO完成签到,获得积分10
8秒前
激动的访文完成签到,获得积分10
8秒前
tRNA发布了新的文献求助30
9秒前
9秒前
10秒前
研友_VZG7GZ应助Alan采纳,获得10
10秒前
10秒前
11秒前
fhap关注了科研通微信公众号
13秒前
summer发布了新的文献求助10
13秒前
FanKun完成签到,获得积分10
13秒前
13秒前
bbj完成签到,获得积分10
15秒前
15秒前
土星发布了新的文献求助10
15秒前
15秒前
orixero应助22222采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得20
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
douKY应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
HEAUBOOK应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
王子陌完成签到,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783723
求助须知:如何正确求助?哪些是违规求助? 3328883
关于积分的说明 10239212
捐赠科研通 3044381
什么是DOI,文献DOI怎么找? 1670946
邀请新用户注册赠送积分活动 799982
科研通“疑难数据库(出版商)”最低求助积分说明 759172