Liquid metal assistant self-propagating high-temperature synthesis of S-containing high-entropy MAX-phase materials

金属 材料科学 热力学 相(物质) 化学 物理 冶金 有机化学
作者
Donglong Bai,Qiang Wang,Bin Deng,Yang Li,Ao Huang,Zitong Cheng,Zhao Yun,Jing Li,Yang Li,Wei Yao,Jianguang Xu
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
卷期号:209: 1-8 被引量:7
标识
DOI:10.1016/j.jmst.2024.05.006
摘要

Due to their high-entropy effects, the high-entropy (HE) MAX-phase materials improve the comprehensive performance of MAX phases, opening up more possibilities for practical engineering applications. However, it is still challenging to obtain S-containing high-entropy MAX phases because of the high volatilization behavior of sulfur, suffering from issues such as high reaction temperature and long reaction time of traditional synthesis methods. This paper proposes a novel process named as liquid metal assistant self-propagating high-temperature synthesis (LMA-SHS) for efficient synthesis of high-purity S-containing high-entropy MAX-phase materials. Low-melting-point metal (Sn or In) has been introduced into the raw mixture and melted into a liquid phase during the early stage of the SHS reaction. By serving as a "binder" between transition metal atoms of the M-site due to the negative mixing enthalpy, this liquid phase can accelerate mass and heat transfer during the SHS process, ensuring a uniform solid solution of each element and realizing the synthesis of high-purity (TiNbVZr)2SC in an extremely short time. The synthesis method for high-entropy MAX-phase materials developed in this study, i.e., LMA-SHS, showing very short reaction time, low energy consumption, high yield, and low cost, has the promise to be a general energy- and resource-efficient route towards high-purity HE materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龚文亮完成签到,获得积分10
刚刚
于归故城完成签到,获得积分10
1秒前
Dear77发布了新的文献求助10
1秒前
beyond-guo完成签到,获得积分20
2秒前
2秒前
可爱的函函应助syx采纳,获得10
2秒前
乐乐应助顺利超短裙采纳,获得10
2秒前
话家发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
田様应助江边鸟采纳,获得20
3秒前
3秒前
3秒前
4秒前
鞠晓蕾完成签到,获得积分10
4秒前
zxx完成签到,获得积分20
4秒前
周舟舟发布了新的文献求助10
4秒前
baimo发布了新的文献求助10
4秒前
乐乐应助yingying采纳,获得10
5秒前
5秒前
6秒前
小二郎完成签到 ,获得积分10
6秒前
7秒前
QiJiLuLu完成签到,获得积分10
7秒前
南滨完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
zxx发布了新的文献求助10
8秒前
8秒前
lin完成签到 ,获得积分10
8秒前
ly完成签到,获得积分10
9秒前
9秒前
beyond-guo发布了新的文献求助30
10秒前
kp完成签到,获得积分10
10秒前
李健应助zxy采纳,获得10
10秒前
刻苦的秋柔完成签到,获得积分10
11秒前
坚强的秋白完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
暖小阳完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4673874
求助须知:如何正确求助?哪些是违规求助? 4052224
关于积分的说明 12531184
捐赠科研通 3745991
什么是DOI,文献DOI怎么找? 2068917
邀请新用户注册赠送积分活动 1098052
科研通“疑难数据库(出版商)”最低求助积分说明 978276