Deep Incomplete Multiview Clustering via Local and Global Pseudo-Label Propagation

判别式 水准点(测量) 聚类分析 机器学习 计算机科学 人工智能 深层神经网络 利用 深度学习 亲和繁殖 代表(政治) 数据挖掘 模式识别(心理学) 相关聚类 树冠聚类算法 大地测量学 政治 计算机安全 法学 地理 政治学
作者
Cong Feng,Ao Li,Haoyue Xu,Hailu Yang,Xinwang Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tnnls.2024.3411294
摘要

Since the rapid progress in multimedia and sensor technologies, multiview clustering (MVC) has become a prominent research area within machine learning and data mining, experiencing significant advancements over recent decades. MVC is distinguished from single-view clustering by its ability to integrate complementary information from multiple distinct data perspectives and enhance clustering performance. However, the efficacy of MVC methods is predicated on the availability of complete views for all samples-an assumption that frequently fails in practical scenarios where data views are often incomplete. To surmount this challenge, various approaches to incomplete MVC (IMVC) have been proposed, with deep neural networks emerging as a favored technique for their representation learning ability. Despite their promise, previous methods commonly adopt sample-level (e.g., features) or affinity-level (e.g., graphs) guidance, neglecting the discriminative label-level guidance (i.e., pseudo-labels). In this work, we propose a novel deep IMVC method termed pseudo-label propagation for deep IMVC (PLP-IMVC), which integrates high-quality pseudo-labels from the complete subset of incomplete data with deep label propagation networks to obtain improved clustering results. In particular, we first design a local model (PLP-L) that leverages pseudo-labels to their fullest extent. Then, we propose a global model (PLP-G) that exploits manifold regularization to mitigate the label noises, promote view-level information fusion, and learn discriminative unified representations. Experimental results across eight public benchmark datasets and three evaluation metrics prove our method's efficacy, demonstrating superior performance compared to 18 advanced baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
领导范儿应助Plateau采纳,获得10
1秒前
哈哈哈完成签到,获得积分10
1秒前
2秒前
waoller1发布了新的文献求助10
2秒前
听雨发布了新的文献求助10
2秒前
温暖静柏完成签到,获得积分20
4秒前
4秒前
如意2023发布了新的文献求助10
4秒前
微笑向卉发布了新的文献求助10
4秒前
CodeCraft应助阿白采纳,获得10
5秒前
Yara.H发布了新的文献求助10
6秒前
优美语堂发布了新的文献求助30
6秒前
科研通AI5应助sinsinsin采纳,获得10
8秒前
yang发布了新的文献求助10
8秒前
0℃发布了新的文献求助10
8秒前
9秒前
9秒前
桐桐应助西瓜西西西采纳,获得10
11秒前
彭于晏应助马越智能服务采纳,获得10
12秒前
烟花应助0℃采纳,获得10
13秒前
水博士发布了新的文献求助10
13秒前
fiugui发布了新的文献求助10
17秒前
丘比特应助waoller1采纳,获得10
17秒前
赘婿应助waoller1采纳,获得10
17秒前
搜集达人应助waoller1采纳,获得10
17秒前
完美世界应助waoller1采纳,获得10
17秒前
彭于晏应助waoller1采纳,获得10
17秒前
NexusExplorer应助waoller1采纳,获得10
17秒前
今后应助waoller1采纳,获得10
18秒前
Hello应助waoller1采纳,获得10
18秒前
科研通AI2S应助waoller1采纳,获得10
18秒前
小花排草应助waoller1采纳,获得30
18秒前
Viiv完成签到,获得积分10
18秒前
19秒前
19秒前
21秒前
21秒前
丘比特应助haowu采纳,获得10
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
Византийско-аланские отно- шения (VI–XII вв.) 500
Mechanics of Composite Strengthening 500
水稻光合CO2浓缩机制的创建及其作用研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4175859
求助须知:如何正确求助?哪些是违规求助? 3711116
关于积分的说明 11703907
捐赠科研通 3394211
什么是DOI,文献DOI怎么找? 1862286
邀请新用户注册赠送积分活动 921099
科研通“疑难数据库(出版商)”最低求助积分说明 833007