Hematoma expansion prediction based on SMOTE and XGBoost algorithm

人口统计学的 算法 健康信息学 计算机科学 光学(聚焦) 人工智能 数据集 集合(抽象数据类型) 病历 机器学习 数据挖掘 医学 放射科 病理 公共卫生 物理 人口学 社会学 光学 程序设计语言
作者
Yan Li,Chaonan Du,Sikai Ge,Ruonan Zhang,Yi Ming Shao,Keyu Chen,Zhepeng Li,Fei Ma
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:24 (1) 被引量:8
标识
DOI:10.1186/s12911-024-02561-9
摘要

Abstract Hematoma expansion (HE) is a high risky symptom with high rate of occurrence for patients who have undergone spontaneous intracerebral hemorrhage (ICH) after a major accident or illness. Correct prediction of the occurrence of HE in advance is critical to help the doctors to determine the next step medical treatment. Most existing studies focus only on the occurrence of HE within 6 h after the occurrence of ICH, while in reality a considerable number of patients have HE after the first 6 h but within 24 h. In this study, based on the medical doctors recommendation, we focus on prediction of the occurrence of HE within 24 h, as well as the occurrence of HE every 6 h within 24 h. Based on the demographics and computer tomography (CT) image extraction information, we used the XGBoost method to predict the occurrence of HE within 24 h. In this study, to solve the issue of highly imbalanced data set, which is a frequent case in medical data analysis, we used the SMOTE algorithm for data augmentation. To evaluate our method, we used a data set consisting of 582 patients records, and compared the results of proposed method as well as few machine learning methods. Our experiments show that XGBoost achieved the best prediction performance on the balanced dataset processed by the SMOTE algorithm with an accuracy of 0.82 and F1-score of 0.82. Moreover, our proposed method predicts the occurrence of HE within 6, 12, 18 and 24 h at the accuracy of 0.89, 0.82, 0.87 and 0.94, indicating that the HE occurrence within 24 h can be predicted accurately by the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小兵发布了新的文献求助10
刚刚
小蘑菇应助paper采纳,获得10
刚刚
涂上小张完成签到,获得积分10
1秒前
1秒前
球球球完成签到,获得积分10
2秒前
4秒前
绿兔子完成签到,获得积分10
5秒前
十三完成签到 ,获得积分10
5秒前
6秒前
球球球发布了新的文献求助10
6秒前
丘比特应助活力篮球采纳,获得10
7秒前
7秒前
8秒前
9秒前
悦耳玲完成签到 ,获得积分10
9秒前
10秒前
Huayan发布了新的文献求助10
10秒前
11秒前
12秒前
小二郎应助hygge采纳,获得10
12秒前
遇上就这样吧应助小兵采纳,获得10
13秒前
浮游应助李开心呀采纳,获得10
13秒前
13秒前
渡星河发布了新的文献求助10
14秒前
15秒前
yuzhecheng发布了新的文献求助10
16秒前
解文哲完成签到,获得积分20
18秒前
英姑应助muse8采纳,获得10
20秒前
lllllll发布了新的文献求助10
20秒前
渡星河完成签到,获得积分10
21秒前
22秒前
22秒前
852应助风风是枫枫采纳,获得10
23秒前
bkagyin应助Huayan采纳,获得10
24秒前
慕青应助alex采纳,获得10
26秒前
27秒前
华仔应助枫叶采纳,获得10
29秒前
yjwang发布了新的文献求助10
29秒前
鳗鱼匕发布了新的文献求助10
31秒前
无极微光应助月军采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784769
求助须知:如何正确求助?哪些是违规求助? 4111889
关于积分的说明 12720900
捐赠科研通 3836636
什么是DOI,文献DOI怎么找? 2115392
邀请新用户注册赠送积分活动 1138391
关于科研通互助平台的介绍 1024456