Deep Scaling Factor Quantization Network for Large-scale Image Retrieval

散列函数 计算机科学 量化(信号处理) 通用哈希 理论计算机科学 特征哈希 双重哈希 二进制代码 局部敏感散列 算法 动态完美哈希 汉明距离 哈希表 数据挖掘 人工智能 二进制数 数学 算术 计算机安全
作者
Z. Y. Deng,Zhihui Lai,Yujuan Ding,Heng Kong,Xu Wu
标识
DOI:10.1145/3652583.3658017
摘要

Hash learning aims to map multimedia data into Hamming space, in which the data point is represented by low-dimensional binary codes and the similarity relationships are preserved. Despite existing hash learning methods have been effectively used in data retrieval tasks for its merits of low memory cost and high computational efficiency, there still remain two major technical challenges. Firstly, due to the discrete constraints of hash codes, traditional hash methods typically use relaxation strategy to learn real-value features and then quantize them into binary codes through a sign function, resulting in significant quantization errors. Secondly, hash codes are usually low-dimensional, which would be inadequate to preserve either the information of each data point or the relationship between two. These two challenges would greatly limit the retrieval performance of learned hash codes. To solve these problems, we introduce a novel quantization method called scaling factor quantization to enhance hash learning. Unlike traditional hashing methods, we propose to map the data into two parts, i.e., hash codes and scaling factors, to learn the representative codes for the use of retrieval. Specifically, we design a multi-output branch network structure, i.e., Deep Scaling factor Quantization Network (DSQN) and an iterative training strategy for DSQN to learn the two parts of mapping. Comprehensive experiments conducted on three benchmark datasets demonstrate that the hash codes and scaling factors learned by DSQN significantly improve retrieval accuracy compared to existing hash learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
back you up应助nold采纳,获得30
1秒前
李爱国应助zz采纳,获得10
2秒前
2秒前
3秒前
项阑悦发布了新的文献求助10
4秒前
淡然老头完成签到 ,获得积分10
4秒前
852应助老隋采纳,获得10
4秒前
我是老大应助漂亮水绿采纳,获得10
5秒前
zeng发布了新的文献求助20
5秒前
ggg完成签到,获得积分10
5秒前
5秒前
书篆发布了新的文献求助30
6秒前
现代雁桃发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
项阑悦完成签到,获得积分10
9秒前
AHR发布了新的文献求助10
9秒前
高高冰蝶应助SuLi_ALL采纳,获得10
9秒前
舒心的芸发布了新的文献求助10
10秒前
10秒前
落寞臻发布了新的文献求助10
11秒前
小蘑菇应助谓风采纳,获得10
11秒前
11秒前
缥莲发布了新的文献求助10
12秒前
星辰大海应助月球宇航员采纳,获得10
12秒前
赫连紫发布了新的文献求助10
13秒前
14秒前
zm发布了新的文献求助10
14秒前
14秒前
qll完成签到,获得积分10
14秒前
老隋完成签到,获得积分20
15秒前
笑柳发布了新的文献求助10
17秒前
传奇3应助littlestar采纳,获得10
19秒前
莫一城发布了新的文献求助10
20秒前
滕擎发布了新的文献求助10
21秒前
21秒前
double发布了新的文献求助10
21秒前
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334574
关于积分的说明 10270902
捐赠科研通 3051026
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802553
科研通“疑难数据库(出版商)”最低求助积分说明 760777